Linkage maps in cucumber (Cucumis sativus var. sativus L.) have been constructed using morphological traits, isozymes, restriction fragment length polymorphisms (RFLPs), and random amplified polymorphic DNAs (RAPDs). The lack of polymorphism in cucumber has led to the construction of relatively unsaturated maps (13- to 80-point). We have added amplified fragment length polymorphism (AFLP) markers to existing narrow-based (within C. sativus) and wide-based (C. sativus x C. sativus var. hardwickii) maps. JOINMAP v. 2.0 was used to construct maps and to join these with historical maps from several previous studies. Our narrow- and wide-based merged maps contain 255 and 197 markers, respectively, including morphological traits, disease resistance loci, isozymes, RFLPs, RAPDs, and AFLPs. Condensation of total map distance occurred in merged maps compared to historic maps using many of the same markers. This phenomenon is most likely due to differences in map construction algorithms. The merged maps represent the best fit of the data used and are an important first step towards the construction of a comprehensive linkage map for cucumber. Identification of additional anchor markers between the narrow- and wide-based maps presented here may allow their future integration into a unified model.
Restriction fragment length polymorphism (RFLP) maps have been constructed for cultivated sunflower (Helianthus annuus L.) using three independent sets of RFLP probes. The aim of this research was to integrate RFLP markers from two sets with RFLP markers for resistance gene candidate (RGC) and amplified fragment length polymorphism (AFLP) markers. Genomic DNA samples of HA370 and HA372, the parents of the F2 population used to build the map, were screened for AFLPs using 42 primer combinations and RFLPs using 136 cDNA probes (RFLP analyses were performed on DNA digested with EcoRI, HindIII, EcoRV, or DraI). The AFLP primers produced 446 polymorphic and 1101 monomorphic bands between HA370 and HA372. The integrated map was built by genotyping 296 AFLP and 104 RFLP markers on 180 HA370 x HA372 F2 progeny (the AFLP marker assays were performed using 18 primer combinations). The HA370 x HA372 map comprised 17 linkage groups, presumably corresponding to the 17 haploid chromosomes of sunflower, had a mean density of 3.3 cM, and was 1326 cM long. Six RGC RFLP loci were polymorphic and mapped to three linkage groups (LG8, LG13, and LG15). AFLP markers were densely clustered on several linkage groups, and presumably reside in centromeric regions where recombination is reduced and the ratio of genetic to physical distance is low. Strategies for targeting markers to euchromatic DNA need to be tested in sunflower. The HA370 x HA372 map integrated 14 of 17 linkage groups from two independent RFLP maps. Three linkage groups were devoid of RFLP markers from one of the two maps.
The watermelon strain of papaya ringspot virus (PRSV-W) and zucchini yellow mosaic virus (ZYMV) are potyviruses that cause significant disease losses in cucumber. Resistances have been identified primarily in exotic germplasm that require transfer to elite cultivated backgrounds. To select more efficiently for virus resistances, we identified molecular markers tightly linked to PRSV-W and ZYMV resistances in cucumber. We generated F6 recombinant inbred lines (RILs) from a cross between Cucumis sativus L. 'Straight 8' and a line from 'Taichung Mou Gua', TMG1 (susceptible and resistant, respectively, to both viruses), and studied the segregations of amplified fragment length polymorphism (AFLP) markers, randomly amplified polymorphic DNAs (RAPDs), restriction fragment length polymorphisms (RFLPs), and resistances to PRSV-W and ZYMV. A 353-point map of cucumber was generated, delineating 12 linkage groups at LOD 3.5. Linkage arrangements among RFLPs were consistent with previously published maps; however linkages among RAPDs in our map did not agree with a previously published map. Resistances to PRSV-W and ZYMV were tightly linked (2.2 cM) and mapped to the end of one linkage group. One AFLP cosegregated with resistance to ZYMV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.