Ovalbumin challenge models of asthma offer many opportunities for increasing our understanding of the pathogenetic mechanisms underlying this disease, as well as for identifying novel therapeutic targets. There is no single "classical" model, because numerous alternatives exist with respect to the choice of mouse strain, method of sensitisation, route and duration of challenge, and approach to assessing the host response. Moreover, the limitations of these models need to be recognised when attempting to interpret experimental findings. Nevertheless, careful use of well-defined models allows investigators to answer specific questions that are otherwise difficult to address.
These results imply a critical role for IL-13 in accumulation of intraepithelial eosinophils in chronic asthma, as well as in epithelial and subepithelial remodelling. In addition, they suggest that in chronic asthma, IL-13 may be capable of signalling via a pathway that does not involve IL-4Ralpha.
BackgroundThe role of microRNAs (miRNAs) in regulating gene expression is currently an area of intense interest. Relatively little is known, however, about the role of miRNAs in inflammatory and immunologically-driven disorders. In a mouse model, we have previously shown that miRNAs are potentially important therapeutic targets in allergic asthma, because inhibition of miR-126, one of a small subset of miRNAs upregulated in the airway wall, effectively suppressed Th2-driven airway inflammation and other features of asthma. In the present study, we extended investigation of the therapeutic potential of miRNA inhibition to our well-established model of chronic asthma.MethodsFemale BALB/c mice were systemically sensitised with ovalbumin (OVA) and chronically challenged with low mass concentrations of aerosolised OVA for up to 6 weeks. Airway tissue was obtained by blunt dissection and RNA was isolated for miRNA profiling. On the basis of the results obtained, animals were subsequently treated with either an antagomir to miR-126 (ant-miR-126) or a scrambled control antagomir once weekly during the 6 weeks of chronic challenge, and the effects on airway inflammation and remodelling were assessed using established morphometric techniques.ResultsCompared to naïve mice, there was selective upregulation of a modest number of miRNAs, notably miR-126, in the airway wall tissue of chronically challenged animals. The relative increase was maximal after 2 weeks of inhalational challenge and subsequently declined to baseline levels. Compared to treatment with the scrambled control, ant-miR-126 significantly reduced recruitment of intraepithelial eosinophils, but had no effect on the chronic inflammatory response, or on changes of airway remodelling.ConclusionsIn this model of chronic asthma, there was an initial increase in expression of a small number of miRNAs in the airway wall, notably miR-126. However, this later declined to baseline levels, suggesting that sustained changes in miRNA may not be essential for perpetuation of chronic asthma. Moreover, inhibition of miR-126 by administration of an antagomir suppressed eosinophil recruitment into the airways but had no effect on chronic inflammation in the airway wall, or on changes of remodelling, suggesting that multiple miRNAs are likely to regulate the development of these lesions.
Neutrophilic inflammation in acute exacerbations of asthma tends to be resistant to treatment with glucocorticoids. This may be related to decreased activity and expression of histone deacetylase-2 (HDAC2), which down-regulates expression of proinflammatory genes via recruitment to the glucocorticoid receptor complex. We assessed airway inflammation and response to steroid treatment in a novel mouse model of an acute exacerbation of chronic asthma. Systemically sensitized mice received low-level challenge with aerosolized ovalbumin for 4 weeks, followed by a single moderate-level challenge to induce enhanced inflammation in distal airways. We assessed the effects of pre-treatment with dexamethasone on the accumulation of inflammatory cells in the airways, airway responsiveness to methacholine, expression and enzymatic activity of nuclear proteins including histone acetyl transferase (HAT) and HDAC2, and levels of transcripts for neutrophil chemoattractant and survival cytokines. Dexamethasone suppressed inflammation associated with eosinophil and T-lymphocyte recruitment, but did not prevent neutrophil accumulation or development of airway hyperresponsiveness. Increased activity of HAT was suppressed by steroid treatment, but the marked diminution of HDAC2 activity and increased activity of nuclear factor-kB were not reversed. Correspondingly, elevated expression of mRNA for TNF-a, granulocytemacrophage colony-stimulating factor, IL-8, and p21 waf were also not suppressed by dexamethasone. Levels of lipid peroxidation and protein nitration products were elevated in the acute exacerbation model. We conclude that impaired nuclear recruitment of HDAC2 could be an important mechanism of steroid resistance of the neutrophilic inflammation in exacerbations of asthma. Oxidative stress may contribute to decreased HDAC2 activity.
The relative contribution of Th2 and Th1 cytokines to the pathogenesis of lesions of chronic asthma remains poorly understood. To date, therapeutic inhibition of Th2 cytokines has proved disappointing. We used a clinically relevant model of chronic allergic asthma in mice to compare the effects of administering neutralizing antibodies to interleukin (IL)-13, IL-5, and interferon-gamma (IFN-gamma) to animals with established disease. As has been observed in clinical studies, anti-IL-5 inhibited both inflammation and remodeling but had no effect on airway responsiveness to methacholine. Anti-IL-13 effectively suppressed eosinophil recruitment and accumulation of chronic inflammatory cells in the airways. This treatment also partially suppressed changes of airway wall remodeling, including goblet cell hyperplasia/metaplasia and subepithelial fibrosis, but had limited ability to inhibit airway hyperreactivity (AHR). In contrast, treatment with anti-IFN-gamma markedly suppressed AHR. This antibody inhibited accumulation of chronic inflammatory cells but did not affect eosinophil recruitment or changes of remodeling. We conclude that inhibition of IL-5 is beneficial and that inhibition of IL-13 has considerable potential as a therapeutic strategy in chronic asthma, that IFN-gamma may play an important role in the pathogenesis of AHR, and that co-operative interaction between Th2 and Th1 cytokines contributes to the pathogenesis of the lesions of chronic asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.