This paper examines the thermal properties of cement composites reinforced with vegetable bagasse fibres (1.5 and 3% wrtc). Thermal properties have been correlated to macroscopic density and porosity in order to estimate thermal conductivity of fibres using a calculation inspired from Maxwell Eucken modelling. Experimental investigations reveal that adding retified bagasse fibres reduces composites thermal conductivity and yields a weaker specific heat in comparison with composites made with alkaline bagasse fibres. Moreover, the more the fibres, the lighter the specimen; lower its thermal conductivity and lower its specific heat. Thermal conductivity of alkaline fibres is lower than retified fibres one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.