The increase in natural water bodies pollution caused by intensive animal farming requires the development of innovative sustainable treatment processes. This study assessed the influence of piggery wastewater (PWW) load, air dosing, CO2/NaHCO3supplementation and pH control on PWW treatment by mixed cultures of purple phototrophic bacteria (PPB) under infrared radiation in batch photobioreactors. PPB was not able to grow in raw PWW but PWW dilution prevented inhibition and supported an effective light penetration. Despite the fact that PPB were tolerant to O2, carbon recovery decreased in the presence of air (induced by stripping). CO2 supplementation was identified as an effective strategy to maximize the removal of carbon during PPB-based PWW treatment with removal efficiencies of 72% and 74% for TOC and VFAs. However, the benefits derived from CO2 addition were induced by the indirect pH control exerted in the cultivation medium. Thus, PPB supported an optimal pollutant removal performance at pH 7, with removal efficiencies of 75%, 39% and 98% for TOC, TN and VFAs.
Purple phototrophic bacteria (PPB) represent an innovative approach for wastewater treatment with a high metabolic plasticity, able to grow under aerobic and anaerobic conditions. This study comparatively assessed the long-term performance (450 days of operation) of an open and closed PPB-based photobioreactor treating of piggery wastewater (PWW). The influence of wastewater dilution, illuminated area to volume ratio, biomass settling and recirculation, and infrared light intensity on wastewater treatment was evaluated at 7 days of hydraulic retention time. An increase in PWW dilution from 4 to 8 folds did not entail higher TOC removal efficiencies (REs) in the open photobioreactor (87% versus 89%), but a significant increase in the closed photobioreactor (from 73% to 80%). The increase in the illuminated area to volume ratio increased TN-REs up to 99% and 49% in the open and closed photobioreactor, respectively, with a concomitant increase in the temperature of both systems. However, temperature control did not mediate a significant enhancement in PWW treatment.Biomass settling and recirculation resulted in higher TN-REs (80%) and TOC-REs (90%) in the closed photobioreactor. The increase in infrared radiation from 100 to 300 W m -2 fostered PPB growth. High water evaporation losses (deteriorating effluent quality) were recorded in the open photobioreactor, where carbon dioxide and ammonia stripping were identified as the main pathways supporting carbon and nitrogen removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.