We propose a method to suppress the so-called zero-order term in a hologram, based on an iterative principle. During the hologram acquisition process, the encoded information includes the intensities of the two beams creating the interference pattern, which do not contain information about the recorded complex wavefront, and that can disrupt the reconstructed signal. The proposed method selectively suppresses the zero-order term by employing the information obtained during wavefront reconstruction in an iterative procedure, thus enabling its suppression without any a priori knowledge about the object. The method is analyzed analytically and its convergence is studied. Then, its performance is shown experimentally. Its robustness is assessed by applying the procedure on various types of holograms, such as topographic images of microscopic specimens or speckle holograms.
We present a novel technique for three-dimensional (3D) image processing of complex fields. It consists in inverting the coherent image formation by filtering the complex spectrum with a realistic 3D coherent transfer function (CTF) of a high-NA digital holographic microscope. By combining scattering theory and signal processing, the method is demonstrated to yield the reconstruction of a scattering object field. Experimental reconstructions in phase and amplitude are presented under non-design imaging conditions. The suggested technique is best suited for an implementation in high-resolution diffraction tomography based on sample or illumination rotation.
Three approaches for visualization of transparent micro-objects from holographic data using phase-only SLMs are described. The objects are silicon micro-lenses captured in the near infrared by means of digital holographic microscopy and a simulated weakly refracting 3D object with size in the micrometer range. In the first method, profilometric/tomographic data are retrieved from captured holograms and converted into a 3D point cloud which allows for computer generation of multi-view phase holograms using Rayleigh-Sommerfeld formulation. In the second method, the microlens is computationally placed in front of a textured object to simulat e the image of the textured data as seen through the lens. In the third method, direct optical reconstruction of the micrometer object through a digital lens by modifying the phase with the Gerchberg-Saxton algorithm is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.