International audienceThe marine areas of South America (SA) include almost 30,000 km of coastline and encompass three different oceanic domains--the Caribbean, the Pacific, and the Atlantic--ranging in latitude from 12°N to 55°S. The 10 countries that border these coasts have different research capabilities and taxonomic traditions that affect taxonomic knowledge. This paper analyzes the status of knowledge of marine biodiversity in five subregions along the Atlantic and Pacific coasts of South America (SA): the Tropical East Pacific, the Humboldt Current, the Patagonian Shelf, the Brazilian Shelves, and the Tropical West Atlantic, and it provides a review of ecosystem threats and regional marine conservation strategies. South American marine biodiversity is least well known in the tropical subregions (with the exception of Costa Rica and Panama). Differences in total biodiversity were observed between the Atlantic and Pacific oceans at the same latitude. In the north of the continent, the Tropical East Pacific is richer in species than the Tropical West Atlantic, however, when standardized by coastal length, there is very little difference among them. In the south, the Humboldt Current system is much richer than the Patagonian Shelf. An analysis of endemism shows that 75% of the species are reported within only one of the SA regions, while about 22% of the species of SA are not reported elsewhere in the world. National and regional initiatives focusing on new exploration, especially to unknown areas and ecosystems, as well as collaboration among countries are fundamental to achieving the goal of completing inventories of species diversity and distribution. These inventories will allow accurate interpretation of the biogeography of its two oceanic coasts and latitudinal trends, and will also provide relevant information for science based policie
N. 2005. Biogeographical patterns and Rapoport's rule in southeastern Pacific benthic polychaetes of the Chilean coast. Á/ Ecography 28: 363 Á/373.Recently three biogeographical units were identified along the Chilean coast (the Magellanic Province, an Intermediate Area, and the Peruvian Province), however few studies have focused on the factors and dynamic processes that formed these spatial units (e.g. Rapoport's rule and its causal mechanisms). In this study we used benthic polychaetes of the Chilean coast to evaluate patterns of latitudinal distribution and species richness, and the existence of the three main biogeographical provinces described for the Chilean coast. Additionally, we evaluated the latitudinal Rapoport effects and geometric constraint as a null hypothesis explaining the species richness distribution. We found that benthic polychaete diversity increased towards southern latitudes. The cluster and ordination (non-metric MultiDimensional Scaling, nMDS) analyses of the distribution data, presented only two statistically significant (bootstrapping techniques) biogeographic provinces along the Chilean coast, with a break occurring between 418 and 428S. While, our results did not support a latitudinal Rapoport effect, they did support the view that latitudinal Rapoport effects are a local phenomenon, occurring only for the Northeastern Pacific marine taxa. The relationship between latitudinal range extent and mean latitude indicated the existence of two hard boundaries at either extreme of the Chilean coast, limiting the geographical ranges of the species. However, geometric constraints tested using a Monte Carlo simulation approach showed a weak level of mid-domain effect on species richness. Finally, we propose that geometric constraint together with the geomorphology and historical characteristics of the Chilean coast explain the biogeographical patterns of benthic polychaete taxa in Chile.
Summary1. It is widely recognized that macroecological patterns are not independent of the evolution of the lineages involved in generating these patterns. While many researchers have begun to evaluate the effect of ancestordescendant relationships on observed patterns using the phylogenetic comparative method, most macroecological studies only utilize the cross-sectional comparative method to 'remove the phylogenetic history', without considering the option of evaluating its effect without removing it. 2. Currently, most researchers use this method without explicitly evaluating three fundamental evolutionary assumptions of the comparative method: (i) that the phylogeny is constructed without error (which implies evaluating phylogenetic uncertainty); (ii) that more closely related species tend to show more similar characters than expected by chance (which implies evaluating the phylogenetic signal) and; (iii) that the model of the characters' evolution effectively recapitulates their history (which implies comparing the fit of several evolutionary models and evaluating the uncertainty of the estimating model parameters). 3. Macroecological studies will benefit from the use of the comparative method to assess the effect of phylogenetic history without removing its effect. The comparative method will also allow for the simultaneous analysis of trait evolution and its impact on diversification rates; it is important to evaluate these processes together because they are not independent. In addition, explicit evaluations of the assumptions of comparative methods using Bayesian inferences will allow researchers to quantify the uncertainty of specific evolutionary hypotheses accounting for observed macroecological patterns. 4. We illustrate the usefulness of the method using the phylogeny of the genus Sebastes (Pisces: Scorpaeniformes), together with data on the body size-latitudinal range relationship to estimate the effect of phylogenetic history on the observed macroecological pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.