The first-principles calculations are useful for determining electronic and structural properties for a model that simulates a material composed of atomic clusters of ZnO through the analysis of interaction energies and charge distribution. The two-dimensional structural form of ZnO aggregates shows regularly flat hexagons obtained in models of 6, 27 and 54 atoms of Zinc and Oxygen. The structure of a three-dimensional system was determined by dynamics calculations by using the interaction of a pair of monolayers consisting of 108 atoms and as a result, a cage structure was formed from a cluster of Zn54 and O54 identifying only bond atoms at the ends that promote the union of monolayers. The stable structure shows modifications of the atomic bonds in whose centers hexagonal rings prevailed and at the arrangements of the end of triangles, squares, pentagons and even rings of 10 and 11 atoms were obtained. Atomic positions and charge distribution were analyzed based on the methodology used Density Functional Theory (DFT), with the becke88-LYP exchange and correlation functional.
The first-principles calculations are useful for determining electronic and structural properties for a model that simulates a material composed of atomic clusters of ZnO through the analysis of interaction energies and charge distribution. The two-dimensional structural form of ZnO aggregates shows regularly flat hexagons obtained in models of 6, 27 and 54 atoms of Zinc and Oxygen. The structure of a three-dimensional system was determined by dynamics calculations by using the interaction of a pair of monolayers consisting of 108 atoms and as a result, a cage structure was formed from a cluster of Zn54 and O54 identifying only bond atoms at the ends that promote the union of monolayers. The stable structure shows modifications of the atomic bonds in whose centers hexagonal rings prevailed and at the arrangements of the end of triangles, squares, pentagons and even rings of 10 and 11 atoms were obtained. Atomic positions and charge distribution were analyzed based on the methodology used Density Functional Theory (DFT), with the becke88-LYP exchange and correlation functional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.