Harrigan and Spekkens (Found Phys 40:125-157, 2010) provided a categorization of quantum ontological models classifying them as-ontic or-epistemic if the quantum state describes respectively either a physical reality or mere observers' knowledge. Moreover, they claimed that Einstein-who was a supporter of the statistical interpretation of quantum mechanics-endorsed an epistemic view of. In this essay we critically assess such a classification and some of its consequences by proposing a twofold argumentation. Firstly, we show that Harrigan and Spekkens' categorization implicitly assumes that a complete description of a quantum system (its ontic state,) only concerns single, individual systems instantiating absolute, intrinsic properties. Secondly, we argue that such assumptions conflict with some current interpretations of quantum mechanics, which employ different ontic states as a complete description of quantum systems. In particular, we will show that, since in the statistical interpretation ontic states describe ensembles rather than individuals, such a view cannot be considered-epistemic. As a consequence, the authors misinterpreted Einstein's view concerning the nature of the quantum state. Next, we will focus on relational quantum mechanics and perspectival quantum mechanics, which in virtue of their relational and perspectival metaphysics employ ontic states dealing with relational properties. We conclude that Harrigan and Spekkens' categorization is too narrow and entails an inadequate classification of the mentioned interpretations of quantum theory. Hence, any satisfactory classification of quantum ontological models ought to take into account the variations of across different interpretations of quantum mechanics.
Integrated Information Theory (IIT) intends to provide a principled theoretical approach able to characterize consciousness both quantitatively and qualitatively. By starting off identifying the fundamental properties of experience itself, IIT develops a formal framework that relates those properties to the physical substratum of consciousness. One of the central features of ITT is the role that information plays in the theory. On the one hand, one of the self-evident truths about consciousness is that it is informative. On the other hand, mechanisms and systems of mechanics can contribute to consciousness only if they specify systems' intrinsic information. In this paper, we will conceptually analyze the notion of information underlying ITT. Following previous work on the matter, we will particularly argue that information within ITT should be understood in the light of a causal-manipulabilist view of information (López and Lombardi 2018), conforming to which information is an entity that must be involved in causal links in order to be precisely defined. Those causal links are brought to light by means of interventionist procedures following Woodward's and Pearl's version of the manipulability theories of causation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.