Patients with coronavirus disease 2019 (COVID-19) are reported to have a greater prevalence of hyperglycaemia. Cytokine release as a consequence of severe acute respiratory syndrome coronavirus 2 infection may precipitate the onset of metabolic alterations by affecting glucose homeostasis. Here we describe abnormalities in glycometabolic control, insulin resistance and beta cell function in patients with COVID-19 without any pre-existing history or diagnosis of diabetes, and document glycaemic abnormalities in recovered patients 2 months after onset of disease. In a cohort of 551 patients hospitalized for COVID-19 in Italy, we found that 46% of patients were hyperglycaemic, whereas 27% were normoglycaemic. Using clinical assays and continuous glucose monitoring in a subset of patients, we detected altered glycometabolic control, with insulin resistance and an abnormal cytokine profile, even in normoglycaemic patients. Glycaemic abnormalities can be detected for at least 2 months in patients who recovered from COVID-19. Our data demonstrate that COVID-19 is associated with aberrant glycometabolic control, which can persist even after recovery, suggesting that further investigation of metabolic abnormalities in the context of long COVID is warranted.
circRNAs arise from back splicing events during mRNA processing, and when deregulated can play an active role in cancer. Here we characterize a new circRNA (circPOK) encoded by the Zbtb7a gene (also kown as POKEMON, LRF) in the context of mesenchymal tumor progression. circPOK functions as a non-coding proto-oncogenic RNA independently and antithetically to its linear transcript counterpart, which acts as a tumor suppressor by encoding the Pokemon transcription factor. We find that circPOK regulates proproliferative and pro-angiogenic factors by co-activation of the ILF2/3 complex. Importantly, the expression of Pokemon protein and circRNA is aberrantly uncoupled in cancer through differential post-transcriptional regulation. Thus, we identify a novel type of genetic unit, the iRegulon, that yields biochemically distinct RNA products, circular and linear, with diverse and antithetical functions. Our findings further expand the cellular repertoire towards the control of normal biological outputs, while aberrant expression of such components may underlie disease pathogenesis including cancer.
Background:Lactate dehydrogenase (LDH) represents a predictive factor in colorectal cancer patients treated with the angiogenesis inhibitor PTK/ZK. We explored the role of pre-treatment LDH serum levels in colorectal cancer patients receiving first-line bevacizumab.Methods:Metastatic colorectal cancer treated with first-line bevacizumab was eligible. A control group including all consecutive patients treated with chemotherapy alone was also considered. Pre-treatment LDH serum levels were collected for all cases.Results:Median progression-free survival (PFS) in the control group for patients with high and low LDH levels was 4.2 and 8 months, respectively (P=0.0003). Median overall survival (OS) was 19.6 and 34.9 months for patients with high and low LDH levels, respectively (P=0.0014). In the bevacizumab group, partial responses were seen in 14 (58%) high-LDH and 8 (14%) low-LDH patients (P=0.0243), respectively, median PFS was 7.3 and 8.5 months, respectively (P=0.2), and median OS was 22 and 26.6 months, respectively (P=0.7).Conclusion:High LDH levels correlated with worse prognosis. Bevacizumab seemed capable of improving clinical outcome in this specific group of patients who usually present with an adverse natural history. The improved response rate also suggests a role for LDH as a predictive marker.
RNA is believed to have been the first reservoir of genetic information, but despite its ancient history, RNA continues to fascinate and is only now beginning to be understood in its entire variety and communication modality. New discoveries include the pseudogene RNA network regulating PTEN transcription and translation and the identification of circular RNAs as a new class of competing endogenous RNA molecules that sequester microRNAs to suppress their function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.