Tensor-based signal processing methods are usually employed when dealing with multidimensional data and/or systems with a large parameter space. In this paper, we present a family of tensor-based adaptive filtering algorithms, which are suitable for high-dimension system identification problems. The basic idea is to exploit a decomposition-based approach, such that the global impulse response of the system can be estimated using a combination of shorter adaptive filters. The algorithms are mainly tailored for multiple-input/single-output system identification problems, where the input data and the channels can be grouped in the form of rank-1 tensors. Nevertheless, the approach could be further extended for single-input/single-output system identification scenarios, where the impulse responses (of more general forms) can be modeled as higher-rank tensors. As compared to the conventional adaptive filters, which involve a single (usually long) filter for the estimation of the global impulse response, the tensor-based algorithms achieve faster convergence rate and tracking, while also providing better accuracy of the solution. Simulation results support the theoretical findings and indicate the advantages of the tensor-based algorithms over the conventional ones, in terms of the main performance criteria.
Modern solutions for system identification problems employ multilinear forms, which are based on multiple-order tensor decomposition (of rank one). Recently, such a solution was introduced based on the recursive least-squares (RLS) algorithm. Despite their potential for adaptive systems, the classical RLS methods require a prohibitive amount of arithmetic resources and are sometimes prone to numerical stability issues. This paper proposes a new algorithm for multiple-input/single-output (MISO) system identification based on the combination between the exponentially weighted RLS algorithm and the dichotomous descent iterations in order to implement a low-complexity stable solution with performance similar to the classical RLS methods.
Under the conditions of the contemporary economy, the intensification of foreign trade is a fundamental requirement of economic growth, of business internationalization and, implicitly, of economic globalization. On the other hand, business development in the international environment, regardless of the size of the economic entities or their field of activity, tends to become a prerequisite of organizational existence. For this reason, the business strategies must be synchronized with the requirements and demands of the economic globalization. In this context, the authors of the present paper aimed to identify and briefly present the main effects of the globalization on the business internationalization and the management of the multinational companies.
The recently proposed tensor-based recursive least-squares dichotomous coordinate descent algorithm, namely RLS-DCD-T, was designed for the identification of multilinear forms. In this context, a high-dimensional system identification problem can be efficiently addressed (gaining in terms of both performance and complexity), based on tensor decomposition and modeling. In this paper, following the framework of the RLS-DCD-T, we propose a regularized version of this algorithm, where the regularization terms are incorporated within the cost functions. Furthermore, the optimal regularization parameters are derived, aiming to attenuate the effects of the system noise. Simulation results support the performance features of the proposed algorithm, especially in terms of its robustness in noisy environments.
The Kalman filter represents a very popular signal processing tool, with a wide range of applications within many fields. Following a Bayesian framework, the Kalman filter recursively provides an optimal estimate of a set of unknown variables based on a set of noisy observations. Therefore, it fits system identification problems very well. Nevertheless, such scenarios become more challenging (in terms of the convergence and accuracy of the solution) when the parameter space becomes larger. In this context, the identification of linearly separable systems can be efficiently addressed by exploiting tensor-based decomposition techniques. Such multilinear forms can be modeled as rank-1 tensors, while the final solution is obtained by solving and combining low-dimension system identification problems related to the individual components of the tensor. Recently, the identification of multilinear forms was addressed based on the Wiener filter and most well-known adaptive algorithms. In this work, we propose a tensorial Kalman filter tailored to the identification of multilinear forms. Furthermore, we also show the connection between the proposed algorithm and other tensor-based adaptive filters. Simulation results support the theoretical findings and show the appealing performance features of the proposed Kalman filter for multilinear forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.