The increasing demand for fresh fruits and vegetables and for convenience foods is causing an expansion of the market share for minimally processed vegetables. Among the more common pathogenic microorganisms that can be transmitted to humans by these products are Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. The aim of this study was to evaluate the microbial quality of a selection of minimally processed vegetables. A total of 181 samples of minimally processed leafy salads were collected from retailers in the city of Sao Paulo, Brazil. Counts of total coliforms, fecal coliforms, Enterobacteriaceae, psychrotrophic microorganisms, and Salmonella were conducted for 133 samples. L. monocytogenes was assessed in 181 samples using the BAX System and by plating the enrichment broth onto Palcam and Oxford agars. Suspected Listeria colonies were submitted to classical biochemical tests. Populations of psychrotrophic microorganisms >10(6) CFU/g were found in 51% of the 133 samples, and Enterobacteriaceae populations between 10(5) and 106 CFU/g were found in 42% of the samples. Fecal coliform concentrations higher than 10(2) CFU/g (Brazilian standard) were found in 97 (73%) of the samples, and Salmonella was detected in 4 (3%) of the samples. Two of the Salmonella-positive samples had <10(2) CFU/g concentrations of fecal coliforms. L. monocytogenes was detected in only 1 (0.6%) of the 181 samples examined. This positive sample was simultaneously detected by both methods. The other Listeria species identified by plating were L. welshimeri (one sample of curly lettuce) and L. innocua (2 samples of watercress). The results indicate that minimally processed vegetables had poor microbiological quality, and these products could be a vehicle for pathogens such as Salmonella and L. monocytogenes.
Subclinical mastitis caused by Corynebacterium spp. (as a group and at the species level) was investigated by evaluating contralateral (healthy and infected) mammary quarters for somatic cell count (SCC), milk yield and composition. Selection of cows with subclinical mastitis caused by Corynebacterium spp. was performed by microbiological culture of composite samples collected from 1242 dairy cows from 21 dairy herds. For each of the selected cows, milk yield was measured and milk samples were collected at the mammary quarter level (i.e., 1140 mammary samples collected from 285 cows) for analysis of milk composition and SCC. The identification of Corynebacterium spp. isolates was performed by 16S rRNA gene sequencing. One hundred and eighty Corynebacterium spp. isolates were identified, of which 167 (92.77%) were C.bovis and eight (4.44%) non-C.bovis; for five of the Corynebacterium spp. isolates (2.77%), sequencing of 16S rRNA genes did not allow identification at the species level. Mammary quarters infected with Corynebacterium spp. as a group had a higher geometric mean SCC (197,900 cells/mL) than healthy contralateral mammary quarters (85,800 cells/mL). Species of Corynebacterium non-C.bovis were infrequently isolated and did not change SCC, milk yield or milk solid contents when evaluated at the contralateral quarter level. Although C.bovis infection showed no effect on milk yield, fat, protein, casein or total solids in milk, it increased SCC and decreased lactose and milk solids non-fat content.
This experiment was designed to test the effect of inclusion rate of 3-nitrooxypropanol (3-NOP), a methane inhibitor, on enteric methane emissions in dairy cows. The study was conducted with 49 multiparous Holstein cows in a randomized complete block design in 2 phases; phase 1 was with 28 cows, and phase 2 with 21 cows. Cows were fed a basal total mixed ration ad libitum and were blocked based on days in milk, milk yield, and enteric methane emissions during a 14-d covariate period. Treatments were control (no 3-NOP) and 40, 60, 80, 100, 150, and 200 mg of 3-NOP/kg of feed dry matter. Following a 14-d adaptation period, enteric gaseous emissions (methane, carbon dioxide, and hydrogen) were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD) over a 3-d period. Compared with the control, inclusion rate of 3-NOP quadratically decreased daily enteric methane emissions from 22 to 40%. Maximum mitigation effect was achieved with the 3 highest 3-NOP doses (with no statistical difference among 100, 150, and 200 mg/ kg). The decrease in methane emission yield and emission intensity ranged from 16 to 36% and from 25 to 45%, respectively. Emissions of hydrogen quadratically increased 6-to 10-fold, compared with the control; the maximum increase was with 150 mg/kg 3-NOP. Treatment did not affect daily emissions of carbon dioxide, but a linear increase in carbon dioxide emission yield was observed with increasing 3-NOP doses. Dry matter intake and milk yield of the cows was not affected by 3-NOP. Milk fat concentration and yield were increased by 3-NOP due to increased concentration of de novo synthetized short-chain fatty acids in milk. Inclusion of 3-NOP also tended to increase milk urea nitrogen but had no other effects on milk components. In this shortterm experiment, 3-NOP decreased enteric methane emissions without affecting dry matter intake or milk yield and increased milk fat in dairy cows. Maximum mitigation effect was achieved at 100 to 200 mg/kg of feed dry matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.