Pre- and post-synthetic inclusion of solvent molecules in the anilato-based 2D honeycomb ferrimagnets (NBu4)[MnCr(C6O4Br2)]·G, G = PhCl, PhBr, PhI, PhCH3, PhCN and PhNO2, increases their ordering temperatures (from 5.5–6.3 K to 9.5–11.4 K).
We report the synthesis and the characterization of six new heterometallic chloranilato-based ferrimagnets formulated as (NBu4)[MnCr(C6O4Cl2)3]·nG with n = 1 for G = C6H5Cl (1), C6H5I (3), and C6H5CH3 (4); n = 1.5 for G = C6H5Br (2) and n = 2 for G = C6H5CN (5) and C6H5NO2 (6); (C6O4Cl2)2− = 1,3-dichloro,2,5-dihydroxy-1,4-benzoquinone dianion. The six compounds are isostructural and show hexagonal honeycomb layers of the type [MnCr(C6O4Cl2)3]− alternating with layers containing the NBu4+ cations. The hexagons are formed by alternating Mn(II) and Cr(III) connected by bridging bis-bidentate chloranilato ligands. The benzene derivative solvent molecules are located in the hexagonal channels (formed by the eclipsed packing of the honeycomb layers) showing π-π interactions with the anilato rings. The six compounds behave as ferrimagnets with ordering temperatures in the range 9.8–11.2 K that can be finely tuned by the donor character of the benzene ring and by the number of solvent molecules inserted in the hexagonal channels. The larger the electron density on the aromatic ring and the larger the number of solvent molecules are, the higher Tc is. The only exception is provided by toluene, where the formation of H-bonds might be at the origin of weaker π-π interactions observed in this compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.