Forecasting shoreline evolution for sandy coasts is important for sustainable coastal management, given the present-day increasing anthropogenic pressures and a changing future climate. Here, we evaluate eight different time-series forecasting methods for predicting future shorelines derived from historic satellite-derived shorelines. Analyzing more than 37,000 transects around the globe, we find that traditional forecast methods altogether with some of the evaluated probabilistic Machine Learning (ML) time-series forecast algorithms, outperform Ordinary Least Squares (OLS) predictions for the majority of the sites. When forecasting seven years ahead, we find that these algorithms generate better predictions than OLS for 54% of the transect sites, producing forecasts with, on average, 29% smaller Mean Squared Error (MSE). Importantly, this advantage is shown to exist over all considered forecast horizons, i.e., from 1 up to 11 years. Although the ML algorithms do not produce significantly better predictions than traditional time-series forecast methods, some proved to be significantly more efficient in terms of computation time. We further provide insight in how these ML algorithms can be improved so that they can be expected to outperform not only OLS regression, but also the traditional time-series forecast methods. These forecasting algorithms can be used by coastal engineers, managers, and scientists to generate future shoreline prediction at a global level and derive conclusions thereof.
This article presents short-term predictions using neural networks tuned by energy associated to series based-predictor filter for complete and incomplete datasets. A benchmark of high roughness time series from Mackay Glass (MG), Logistic (LOG), Henon (HEN) and some univariate series chosen from NN3 Forecasting Competition are used. An average smoothing technique is assumed to complete the data missing in the dataset. The Hurst parameter estimated through wavelets is used to estimate the roughness of the real and forecasted series. The validation and horizon of the time series is presented by the 15 values ahead. The performance of the proposed filter shows that even a short dataset is incomplete, besides a linear smoothing technique employed; the prediction is almost fair by means of SMAPE index. Although the major result shows that the predictor system based on energy associated to series has an optimal performance from several chaotic time series, in particular, this method among other provides a good estimation when the short-term series are taken from one point observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.