Aim: Scaffolds are a promising approach for spinal cord injury (SCI) treatment. FGF-2 is involved in tissue repair but is easily degradable and presents collateral effects in systemic administration. In order to address the stability issue and avoid the systemic effects, FGF-2 was encapsulated into core–shell microfibers by coaxial electrospinning and its in vitro and in vivo potential were studied. Materials & methods: The fibers were characterized by physicochemical and biological parameters. The scaffolds were implanted in a hemisection SCI rat model. Locomotor test was performed weekly for 6 weeks. After this time, histological analyses were performed and expression of nestin and GFAP was quantified by flow cytometry. Results: Electrospinning resulted in uniform microfibers with a core–shell structure, with a sustained liberation of FGF-2 from the fibers. The fibers supported PC12 cells adhesion and proliferation. Implanted scaffolds into SCI promoted locomotor recovery at 28 days after injury and reduced GFAP expression. Conclusion: These results indicate the potential of these microfibers in SCI tissue engineering. [Formula: see text]
The central nervous system shows limited regenerative capacity after injury. Spinal cord injury (SCI) is a devastating traumatic injury resulting in loss of sensory, motor, and autonomic function distal from the level of injury. An appropriate combination of biomaterials and bioactive substances is currently thought to be a promising approach to treat this condition. Systemic administration of valproic acid (VPA) has been previously shown to promote functional recovery in animal models of SCI. In this study, VPA was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microfibers by the coaxial electrospinning technique. Fibers showed continuous and cylindrical morphology, randomly oriented fibers, and compatible morphological and mechanical characteristics for application in SCI. Drug-release analysis indicated a rapid release of VPA during the first day of the in vitro test. The coaxial fibers containing VPA supported adhesion, viability, and proliferation of PC12 cells. In addition, the VPA/PLGA microfibers induced the reduction of PC12 cell viability, as has already been described in the literature. The biomaterials were implanted in rats after SCI. The groups that received the implants did not show increased functional recovery or tissue regeneration compared to the control. These results indicated the cytocompatibility of the VPA/PLGA core-shell microfibers and that it may be a promising approach to treat SCI when combined with other strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.