We study binomiality of the steady state ideals of chemical reaction networks. Considering rate constants as indeterminates, the concept of unconditional binomiality has been introduced and an algorithm based on linear algebra has been proposed in a recent work for reversible chemical reaction networks, which has a polynomial time complexity upper bound on the number of species and reactions. In this article, using a modified version of species-reaction graphs, we present an algorithm based on graph theory which performs by adding and deleting edges and changing the labels of the edges in order to test unconditional binomiality. We have implemented our graph theoretical algorithm as well as the linear algebra one in Maple and made experiments on biochemical models. Our experiments show that the performance of the graph theoretical approach is similar to or better than the linear algebra approach, while it is drastically faster than Gröbner basis and quantifier elimination methods.
We study binomiality of the steady state ideals of chemical reaction networks. Considering rate constants as indeterminates, the concept of unconditional binomiality has been introduced and an algorithm based on linear algebra has been proposed in a recent work for reversible chemical reaction networks, which has a polynomial time complexity upper bound on the number of species and reactions. In this article, using a modified version of species-reaction graphs, we present an algorithm based on graph theory which performs by adding and deleting edges and changing the labels of the edges in order to test unconditional binomiality. We have implemented our graph theoretical algorithm as well as the linear algebra one in Maple and made experiments on biochemical models. Our experiments show that the performance of the graph theoretical approach is similar to or better than the linear algebra approach, while it is drastically faster than Gröbner basis and quantifier elimination methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.