A series of derivatives structurally related to biphenyline (3) was designed with the aim to modulate selectivity toward the alpha(2)-AR subtypes. The results obtained demonstrated that the presence of a correctly oriented function with positive electronic effect (+sigma) in portion X of the ligands is an important factor for significant alpha(2C)-subtype selectivity (imidazolines 5, 13, 16, and 19). Homology modeling and docking studies support experimental data and highlight the crucial role for the hydrogen bond between the pyridine nitrogen in position 3 of 5 and the NH-indole ring of Trp6.48, which is favorably oriented in the alpha(2C)-subtype, only.
The goal of the present study was to modulate the receptor interaction properties of known alpha 2-adrenoreceptor (AR) antagonists to obtain novel alpha 2-AR agonists with desirable subtype selectivity. Therefore, a phenyl group or one of its bioisosteres or aliphatic moieties with similar steric hindrance were introduced into the aromatic ring of the antagonist lead basic structure. The functional properties of the novel compounds allowed our previous observations to be confirmed. The high efficacy of 7, 12, and 13 as alpha 2-AR agonists and the significant alpha 2C-AR subtype selective activation displayed by 11 and 15 demonstrated that favorable interactions to induce alpha 2-AR activation were formed between the pendant groups of the ligands and the aromatic cluster present in transmembrane domain 6 of the binding site cavity of the receptors.
The study of two series of 2-aryl-ethylen-imidazolines 3-7 and 8-12 inspired by I2-IBS ligands phenyzoline (1) and diphenyzoline (2), respectively, confirmed the interesting "positive" or "negative" morphine analgesia modulation displayed by their corresponding leads and demonstrated that these effects might be correlated with morphine tolerance and dependence, respectively. By comparative examination of rationally designed compounds, some analogies between binding site cavity of I2-IBS proteins and alpha 2C-adrenoreceptor emerged.
To assess the stereochemical requirements for efficient alpha2C-adrenoreceptor activation, the enantiomeric forms of m-nitrobiphenyline [(+/-)-5] were prepared and tested on cells expressing the human alpha2-adrenoreceptor subtypes. The importance of chirality was confirmed, since the enantiomer (R)-(+)-5 was much more efficient than (S)-(-)-5 in producing alpha2C-activation. Surprising reversal of enantioselectivity was observed with respect to structurally similar biphenyline [(+/-)-1] whose (S)-(-)-form proved the preferred alpha2C-configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.