Three-dimensional (3D)-printed catalysts are being increasingly studied; however, most of these studies focus on the obtention of catalytically active monoliths, and thus traditional channeled monolithic catalysts are usually obtained and tested, losing sight of the advantages that 3D-printing could entail. This work goes one step further, and an advanced monolith with specifically designed geometry has been obtained, taking advantage of the versatility provided by 3D-printing. As a proof of concept, nonchanneled advanced monolithic (NCM) support, composed of several transversal discs containing deposits for active phase deposition and slits through which the gas circulates, was obtained and tested in the CO-PrOx reaction. The results evidenced that the NCM support showed superior catalytic performance compared to conventional channeled monoliths (CMs). The region of temperature in which the active phase can work under chemical control, and thus in a more efficient way, is increased by 31% in NCM compared to the powdered or the CM sample. Turbulence occurs inside the fluid path through the NCM, which enhances the mass transfer of reagents and products toward and from the active sites to the fluid bulk favoring the chemical reaction rate. The nonchanneled monolith also improved heat dispersion by the tortuous paths, reducing the local temperature at the active site. Thus, the way in which reactants and products are transported inside the monoliths plays a crucial role, and this is affected by the inner geometry of the monoliths.
Honeycomb-shaped cordierite monoliths are widely used as supports for a great number of industrial applications. However, the high manufacturing costs of cordierite monoliths only justifies its use for high temperatures and aggressive chemical environments, demanding applications where the economic benefit obtained exceeds the manufacturing costs. For low demanding applications, such as the preferential oxidation of CO (CO-PrOx), alternative materials can be proposed in order to reduce manufacturing costs. Polymeric monoliths would be an interesting low-cost alternative, however, the handicap
The preferential CO oxidation (so-called CO-PROX) is the selective CO oxidation amid H2-rich atmospheres, a process where ceria-based materials are consolidated catalysts. This article aims to disentangle the potential CO–H2 synergism under CO-PROX conditions on the low-index ceria surfaces (111), (110) and (100). Polycrystalline ceria, nanorods and ceria nanocubes were prepared to assess the physicochemical features of the targeted surfaces. Diffuse reflectance infrared Fourier-transformed spectroscopy (DRIFTS) shows that ceria surfaces are strongly carbonated even at room temperature by the effect of CO, with their depletion related to the CO oxidation onset. Conversely, formate species formed upon OH + CO interaction appear at temperatures around 60 °C and remain adsorbed regardless the reaction degree, indicating that these species do not take part in the CO oxidation. Density functional theory calculations (DFT) reveal that ceria facets exhibit high OH coverages all along the CO-PROX reaction, whilst CO is only chemisorbed on the (110) termination. A CO oxidation mechanism that explains the early formation of carbonates on ceria and the effect of the OH coverage in the overall catalytic cycle is proposed. In short, hydroxyl groups induce surface defects on ceria that increase the COx–catalyst interaction, revealed by the CO adsorption energies and the stabilization of intermediates and readsorbed products. In addition, high OH coverages are shown to facilitate the hydrogen transfer to form less stable HCOx products, which, in the case of the (110) and (100), is key to prevent surface poisoning. Altogether, this work sheds light on the yet unclear CO–H2 interactions on ceria surfaces during CO-PROX reaction, providing valuable insights to guide the design of more efficient reactors and catalysts for this process.
A new method to synthesize integral carbon monoliths with controlled channels morphology has been developed in this work by combining 3D-printing technology and sol-gel polymerization. By this method, robust and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.