International audienceWe propose a practical solution method for real-world instances of a water-network optimization problem with fixed topology using a nonconvex continuous NLP (NonLinear Programming) relaxation and a MINLP (Mixed Integer NonLinear Programming) search. Our approach employs a relatively simple and accurate model that pays some attention to the requirements of the solvers that we employ. Our view is that in doing so, with the goal of calculating only good feasible solutions, complicated algorithmics can be confined to the MINLP solver. We report successful computational experience using available open-source MINLP software on problems from the literature and on difficult real-world instances. An important contribution of this paper is that the solutions obtained, besides being low cost, are immediately usable in practice because they are characterized by an allocation of diameters to pipes that leads to a correct hydraulic operation of the network. This is not the case for most of the other methods presented in the literature
The collection and distribution of drinking water resources generally require large quantities of energy, that vary according to factors related to the characteristics of the served area, as well as to design and management choices. Energy intensity indicators (energy per unit of volume) are insufficient to assess the weight of different factors that affect the energy consumption and appear not suitable for the comparison of different water supply systems. The key step of this work is to define a methodology for assessing the energy efficiency of water supply systems. In particular, water losses in water distribution systems, generally assessed in relation to the quantity of high quality water dispersed in the environment, are herein considered in relation to their energy content. In addition to the evaluation of energy balance using the approach proposed by Enrique Cabrera et al. in ‘Energy audit of water networks’ (see J. Water Res. Plan. Manage.136 (6), 669–677) an overall efficiency indicator WSEE (Water Supply Energy Efficiency) is then proposed. Its decomposition finally leads to the definition of further indicators, which may help to assess how the structure of the network, leakage rate and/or pumps affect the energy efficiency of the water system. Such indicators can be used to compare different water supply systems and to identify the impact of individual interventions. The proposed energy analysis was applied to two case studies in Northern Italy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.