Objective: To delineate temporal and spatial dynamics of vascular smooth muscle cell (SMC) transcriptomic changes during aortic aneurysm development in Marfan syndrome (MFS). Approach and Results: We performed single-cell RNA sequencing to study aortic root/ascending aneurysm tissue from Fbn1 C1041G/ + (MFS) mice and healthy controls, identifying all aortic cell types. A distinct cluster of transcriptomically modulated SMCs (modSMCs) was identified in adult Fbn1 C1041G/ + mouse aortic aneurysm tissue only. Comparison with atherosclerotic aortic data (ApoE −/− mice) revealed similar patterns of SMC modulation but identified an MFS-specific gene signature, including plasminogen activator inhibitor-1 ( Serpine1 ) and Kruppel-like factor 4 ( Klf4 ). We identified 481 differentially expressed genes between modSMC and SMC subsets; functional annotation highlighted extracellular matrix modulation, collagen synthesis, adhesion, and proliferation. Pseudotime trajectory analysis of Fbn1 C1041G/ + SMC/modSMC transcriptomes identified genes activated differentially throughout the course of phenotype modulation. While modSMCs were not present in young Fbn1 C1041G/ + mouse aortas despite small aortic aneurysm, multiple early modSMCs marker genes were enriched, suggesting activation of phenotype modulation. modSMCs were not found in nondilated adult Fbn1 C1041G/ + descending thoracic aortas. Single-cell RNA sequencing from human MFS aortic root aneurysm tissue confirmed analogous SMC modulation in clinical disease. Enhanced expression of TGF-β (transforming growth factor beta)-responsive genes correlated with SMC modulation in mouse and human data sets. Conclusions: Dynamic SMC phenotype modulation promotes extracellular matrix substrate modulation and aortic aneurysm progression in MFS. We characterize the disease-specific signature of modSMCs and provide temporal, transcriptomic context to the current understanding of the role TGF-β plays in MFS aortopathy. Collectively, single-cell RNA sequencing implicates TGF-β signaling and Klf4 overexpression as potential upstream drivers of SMC modulation.
Rationale: Marfan syndrome (MFS) is a systemic connective tissue disorder notable for the development of aortic root aneurysms and the subsequent life-threatening complications of aortic dissection and rupture. Underlying fibrillin-1 gene mutations cause increased transforming growth factor- (TGF-) signaling. Although TGF- blockade prevents aneurysms in MFS mouse models, the mechanisms through which excessive TGF- causes aneurysms remain ill-defined. Objective:We investigated the role of microRNA-29b (miR-29b) in aneurysm formation in MFS. Methods and Results: Using quantitative polymerase chain reaction, we discovered that miR-29b, a microRNA regulating apoptosis and extracellular matrix synthesis/deposition genes, is increased in the ascending aorta of Marfan (Fbn1 C1039G/؉ ) mice. Increased apoptosis, assessed by increased cleaved caspase-3 and caspase-9, enhanced caspase-3 activity, and decreased levels of the antiapoptotic proteins, Mcl-1 and Bcl-2, were found in the Fbn1 C1039G/؉ aorta. Histological evidence of decreased and fragmented elastin was observed exclusively in the Fbn1 C1039G/؉ ascending aorta in association with repressed elastin mRNA and increased matrix metalloproteinase-2 expression and activity, both targets of miR-29b. Evidence of decreased activation of nuclear factor B, a repressor of miR-29b, and a factor suppressed by TGF-, was also observed in Fbn1 C1039G/؉ aorta. Furthermore, administration of a nuclear factor B inhibitor increased miR-29b levels, whereas TGF- blockade or losartan effectively decreased miR-29b levels in Fbn1 C1039G/؉ mice. Finally, miR-29b blockade by locked nucleic acid antisense oligonucleotides prevented early aneurysm development, aortic wall apoptosis, and extracellular matrix deficiencies. Conclusions:
Bronchopulmonary dysplasia (BPD), a chronic lung disease of infancy, is characterized by arrested alveolar development. Pulmonary angiogenesis, mediated by the vascular endothelial growth factor (VEGF) pathway, is essential for alveolarization. However, the transcriptional regulators mediating pulmonary angiogenesis remain unknown. We previously demonstrated that NF-κB, a transcription factor traditionally associated with inflammation, plays a unique protective role in the neonatal lung. Therefore, we hypothesized that constitutive NF-κB activity is essential for postnatal lung development. Blocking NF-κB activity in 6-day-old neonatal mice induced the alveolar simplification similar to that observed in BPD and significantly reduced pulmonary capillary density. Studies to determine the mechanism responsible for this effect identified greater constitutive NF-κB in neonatal lung and in primary pulmonary endothelial cells (PEC) compared with adult. Moreover, inhibiting constitutive NF-κB activity in the neonatal PEC with either pharmacological inhibitors or RNA interference blocked PEC survival, decreased proliferation, and impaired in vitro angiogenesis. Finally, by chromatin immunoprecipitation, NF-κB was found to be a direct regulator of the angiogenic mediator, VEGF-receptor-2, in the neonatal pulmonary vasculature. Taken together, our data identify an entirely novel role for NF-κB in promoting physiological angiogenesis and alveolarization in the developing lung. Our data suggest that disruption of NF-κB signaling may contribute to the pathogenesis of BPD and that enhancement of NF-κB may represent a viable therapeutic strategy to promote lung growth and regeneration in pulmonary diseases marked by impaired angiogenesis.
The X-linked lymphoproliferative (XLP) syndrome gene encodes a protein named SAP or SH2D1A that is composed of a single Src homology 2 (SH2) domain. Two models have been proposed for its function in lymphocyte signaling. One postulates that it acts as an inhibitor of interactions between the phosphatase SHP-2 and the immune receptor SLAM. The other suggests that it functions as an adaptor to promote the recruitment of a kinase, FynT, to SLAM. Here, we provide evidence in support of both roles for SAP. Using an array of peptides derived from the SLAM family of receptors, we demonstrate that SAP binds with comparable affinities to the same sites in these receptors as do the SH2 domains of SHP-2 and SHIP, suggesting that these three proteins may compete against one another in binding to a given SLAM family receptor. Furthermore, in vitro and in vivo binding studies indicate that SAP is capable of binding directly to FynT, an interaction mediated by the FynT SH3 domain. In cells, FynT was shown to be indispensable for SLAM tyrosine phosphorylation, which, in turn, was drastically enhanced by SAP. Because SAP also blocked the recruitment of SHP-2 to SLAM in these cells, we propose a dual functional role for SAP in SLAM signaling by acting both as an adaptor for FynT and an inhibitor to SHP-2 binding. The physiological relevance of the dual functional role for SAP is underscored by the observation that disease-causing SAP mutants exhibited significantly reduced affinities to both FynT and SLAM.
Two combined rotavirus vaccination regimens were evaluated in a gnotobiotic pig model of rotavirus infection and disease and were compared to previously tested rotavirus vaccination regimens. The first (AttHRV/VLP2؋) involved oral inoculation with one dose of attenuated (Att) Wa human rotavirus (HRV), followed by two intranasal (i.n.) doses of a rotavirus-like particle (2/6-VLPs) vaccine derived from Wa (VP6) and bovine RF (VP2) rotavirus strains. The 2/6-VLPs were coadministered with a mutant Escherichia coli heat-labile toxin, LT-R192G (mLT) adjuvant. For the second regimen (VLP2؋/AttHRV), two i.n. doses of 2/6-VLPs؉mLT were given, followed by one oral dose of attenuated Wa HRV. To compare the protective efficacy and immune responses induced by the combined vaccine regimens with individual rotavirus vaccine regimens, we included in the experiments the following vaccine groups: one oral dose of attenuated Wa HRV (AttHRV1؋ and Mock2؋/AttHRV, respectively), three oral doses of attenuated Wa HRV (AttHRV3؋), three i.n. doses of 2/6-VLPs plus mLT (VLP3؋), three i.n. doses of purified double-layered inactivated Wa HRV plus mLT (InactHRV3؋), mLT alone, and mock-inoculated pigs. The isotype, magnitude, and tissue distribution of antibody-secreting cells (ASCs) in the intestinal and systemic lymphoid tissues were evaluated using an enzyme-linked immunospot assay. The AttHRV/VLP2؋ regimen stimulated the highest mean numbers of intestinal immunoglobulin A (IgA) ASCs prechallenge among all vaccine groups. This regimen induced partial protection against virus shedding (58%) and diarrhea (44%) upon challenge of pigs with virulent Wa HRV. The reverse VLP2؋/AttHRV regimen was less efficacious than the AttHRV/VLP2؋ regimen in inducing IgA ASC responses and protection against diarrhea (25% protection rate) but was more efficacious than VLP3؋ or InactHRV3؋ (no protection). In conclusion, the AttHRV/VLP2؋ vaccination regimen stimulated the strongest B-cell responses in the intestinal mucosal immune system at challenge and conferred a moderately high protection rate against rotavirus disease, indicating that priming of the mucosal inductive site at the portal of natural infection with a replicating vaccine, followed by boosting with a nonreplicating vaccine at a second mucosal inductive site, may be a highly effective approach to stimulate the mucosal immune system and induce protective immunity against various mucosal pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.