Lipid nanoparticles (LN) composed of biodegradable lipids and produced by green methods are candidates for the encapsulation of pesticides, potentially contributing to decreasing their release in the environment. From a safety-by-design concept, this work proposes LN for the encapsulation of insecticide active ingredients (AI). However, given the complexity of nanoparticles, ecotoxicological studies are often controversial, and a detailed investigation of their effects on the environment is required. Accordingly, this work aimed to produce and characterize LN containing the insecticide lambda-cyhalothrin (LC) and evaluate their safety to crops (Solanum lycopersicum and Zea mays), soil invertebrates (Folsomia candida and Eisenia fetida), and soil microbial parameters. The average particle size for LN-loaded with LC (LN–LC) was 165.4 ± 2.34 nm, with narrow size distribution and negative charge (−38.7 ± 0.954 mV). LN were able to encapsulate LC with an entrapment efficacy of 98.44 ± 0.04%, maintaining the stability for at least 4 months. The LN–LC showed no risk to the growth of crops and reproduction of the invertebrates. The effect on microbial parameters showed that the activity of certain soil microbial parameters can be inhibited or stimulated by the presence of LN at highest concentrations, probably by changing the pH of soil or by the intrinsic properties of LN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.