Nosocomial fungal infections, an increasing healthcare concern worldwide, are often associated with medical devices. We have developed antifungal nanoparticle conjugates that can act in suspension or attach to a surface, efficiently killing fungi. For that purpose, we immobilized covalently amphotericin B (AmB), a potent antifungal agent approved by the FDA, widely used in clinical practice and effective against a large spectrum of fungi, into silica nanoparticles. These antifungal nanoparticle conjugates are fungicidal against several strains of Candida sp., mainly by contact. In addition, they can be reused up to 5 cycles without losing their activity. Our results show that the antifungal nanoparticle conjugates are more fungistatic and fungicidal than 10 nm colloidal silver. The antifungal activity of the antifungal nanoparticle conjugates is maintained when they are immobilized on a surface using a chemical adhesive formed by polydopamine. The antifungal nanocoatings have no hemolytic or cytotoxic effect against red blood cells and blood mononuclear cells, respectively. Surfaces coated with these antifungal nanoparticle conjugates can be very useful to render medical devices with antifungal properties.
Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.
Superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with antimicrobial agents are promising infection-targeted therapeutic platforms when coupled with external magnetic stimuli. These antimicrobial nanoparticles (NPs) may offer advantages in fighting intracellular pathogens as well as biomaterial-associated infections. This requires the development of NPs with high antimicrobial activity without interfering with the biology of mammalian cells. Here, we report the preparation of biocompatible antimicrobial SPION@gold core-shell NPs based on covalent immobilization of the antimicrobial peptide (AMP) cecropin melittin (CM) (the conjugate is named AMP-NP). The minimal inhibitory concentration (MIC) of the AMP-NP for Escherichia coli was 0.4 μg/mL, 10-times lower than the MIC of soluble CM. The antimicrobial activity of CM depends on the length of the spacer between the CM and the NP. AMP-NPs are taken up by endothelial (between 60 and 170 pg of NPs per cell) and macrophage (between 18 and 36 pg of NPs per cell) cells and accumulate preferentially in endolysosomes. These NPs have no significant cytotoxic and pro-inflammatory activities for concentrations up to 200 μg/mL (at least 100 times higher than the MIC of soluble CM). Our results in membrane models suggest that the selectivity of AMP-NPs for bacteria and not eukaryotic membranes is due to their membrane compositions. The AMP-NPs developed here open new opportunities for infection-site targeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.