O modelo de desenvolvimento econômico da sociedade capitalista pós-moderna busca sua sobrevivência nos padrões atuais de consumo traz como grande alternativa de sustentabilidade os meios de reutilização dos resíduos gerados pela comunidade através da reciclagem. A arte de reutilizar vem não apenas como meio de preservar, mas também como meio de subsistência de parcela da população excluída do mercado formal de trabalho, os catadores e catadoras de materiais recicláveis.
Floods that occur in hydrographic basins with high slopes are more susceptible to natural hazards due to the occurrence of high intensity hydrological events and the type of sloping relief. These two associated factors contribute to an increase in the destructive potential of these regions, causing economic damage and loss of life for people and animals. This study sought to assess the floodplain areas in the Canoas, Sertão, and Mampituba Rivers that contribute to the Mampituba River basin in southern Brazil, to support emergency procedures for dealing with floods and contribute to the territorial management of these spaces. From the hydrological data of the Mampituba River basin, a hydrological model was used, which generated flows that were inserted as input to a hydrodynamic model, resulting in flood patches in the plains of the modeled rivers. The calibration and integration studies of the models were carried out on a computational platform that employs the hydrometeorological knowledge represented by the models of the basin under study. The hydrodynamic modeling represented in the maps indicated that the flooding patches occur within the river channels and in the plains occupied by agriculture, with a predominance of irrigated rice paddies, pasture fields, forestry, urbanized areas, and native vegetation. In the urban region along the floodplains of the Praia Grande and Mampituba Cities, there are inns, restaurants, and residences which can suffer structural damage and expose people to the danger of a flood event of this magnitude. The results achieved allow us to infer that the integrated modeling system proved to be capable of performing efficient hydrological and hydrodynamic simulations. The methods used can be replicated in other basins and the results can support public managers for greater assertiveness in decision-making when facing the dangers of extreme weather events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.