Microvesicles (MVs) are emerging as a new mechanism of intercellular communication by transferring cellular lipid and protein components to target cells, yet their function in disease is only now being explored. We found that neutrophil-derived MVs were increased in concentration in synovial fluid from rheumatoid arthritis patients compared to paired plasma. Synovial MVs overexpressed the proresolving, anti-inflammatory protein annexin A1 (AnxA1). Mice deficient in TMEM16F, a lipid scramblase required for microvesiculation, exhibited exacerbated cartilage damage when subjected to inflammatory arthritis. To determine the function of MVs in inflammatory arthritis, toward the possibility of MV-based therapeutics, we examined the role of immune cell–derived MVs in rodent models and in human primary chondrocytes. In vitro, exogenous neutrophil-derived AnxA1+ MVs activated anabolic gene expression in chondrocytes, leading to extracellular matrix accumulation and cartilage protection through the reduction in stress-adaptive homeostatic mediators interleukin-8 and prostaglandin E2. In vivo, intra-articular injection of AnxA1+ MV lessened cartilage degradation caused by inflammatory arthritis. Arthritic mice receiving adoptive transfer of whole neutrophils displayed abundant MVs within cartilage matrix and revealed that MVs, but not neutrophils themselves, can penetrate cartilage. Mechanistic studies support a model whereby MV-associated AnxA1 interacts with its receptor FPR2 (formyl peptide receptor 2)/ALX, increasing transforming growth factor–b production by chondrocytes, ultimately leading to cartilage protection. We envisage that MVs, either directly or loaded with therapeutics, can be harnessed as a unique therapeutic strategy for protection in diseases associated with cartilage degeneration.
Annexin A1 (AnxA1) is a protein that displays potent anti-inflammatory properties, but its expression in eye tissue and its role in ocular inflammatory diseases have not been well studied. We investigated the mechanism of action and potential uses of AnxA1 and its mimetic peptide (Ac2-26) in the endotoxin-induced uveitis (EIU) rodent model and in human ARPE-19 cells activated by LPS. In rats, analysis of untreated EIU after 24 and 48 h or EIU treated with topical applications or with a single s.c. injection of Ac2-26 revealed the anti-inflammatory actions of Ac2-26 on leukocyte infiltration and on the release of inflammatory mediators; the systemic administration of Boc2, a formylated peptide receptor (fpr) antagonist, abrogated the peptide’s protective effects. Moreover, AnxA1−/− mice exhibited exacerbated EIU compared with wild-type animals. Immunohistochemical studies of ocular tissue showed a specific AnxA1 posttranslational modification in EIU and indicated that the fpr2 receptor mediated the anti-inflammatory actions of AnxA1. In vitro studies confirmed the roles of AnxA1 and fpr2 and the protective effects of Ac2-26 on the release of chemical mediators in ARPE-19 cells. Molecular analysis of NF-κB translocation and IL-6, IL-8, and cyclooxygenase-2 gene expression indicated that the protective effects of AnxA1 occur independently of the NF-κB signaling pathway and possibly in a posttranscriptional manner. Together, our data highlight the role of AnxA1 in ocular inflammation, especially uveitis, and suggest the use of AnxA1 or its mimetic peptide Ac2-26 as a therapeutic approach.
Ischemia/reperfusion (I/R) injury following stroke can worsen patient outcome through excess inflammation. This study investigated the pharmacologic potential of targeting an endogenous anti-inflammatory circuit via formyl peptide receptor (FPR) 2/lipoxin receptor (ALX) (Fpr2/3 in mouse) in global cerebral I/R. Mice (C57BL/6 and Fpr2/3 2/2 ) were subjected to bilateral common carotid artery occlusion, followed by reperfusion and treatment with FPR agonists: AnxA1 [Annexin A1 mimetic peptide (Ac-AMVSEFLKQAWFI-ENEEQEYVQTVK), 2.5 mg/kg] and 15-epimer-lipoxin A4 (15-epi-LXA 4 ; FPR2/ALX specific, 12.5 and 100 ng/kg). Leukocyte-endothelial (L-E) interactions in the cerebral microvasculature were then quantified in vivo using intravital fluorescence microscopy. 15-epi-LXA 4 administration at the start of reperfusion reduced L-E interactions after 40 min (which was sustained at 2 h with high-dose 15-epi-LXA 4 ) to levels seen in sham-operated animals. Anx-A1 Ac2-26 treatment decreased leukocyte adhesion at 40 min and all L-E interactions at 2 h (up to 95%). Combined treatment with AnxA1 Ac2-26 plus FPR antagonists t-Boc-FLFLF (250 ng/kg) or WRW4 (FPR2/ALX selective, 1.4 mg/kg) abrogated the effects of AnxA1 Ac2-26 fully at 40 min. Antagonists were less effective at 2 h, which we demonstrate is likely because of their impact on early L-E interactions. Our findings indicate that FPR2/ALX activity elicits considerable control over vascular inflammatory responses during cerebral I/R and, therefore, provide evidence that targeting
These results point to a balanced expression of cell-associated-Gal-1/Gal-3 and might impact on the development of new therapeutic strategies for inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.