Thioredoxin interacting protein (Txnip) is an α-arrestin protein that regulates pleiotropic biological responses.Txnip acts as a cancer suppressor and is a critical regulator of energy metabolism. To investigate molecular mechanisms involving Txnip, we searched for its protein binding partners using tandem affinity purification and proteomics analyses and identified several viable candidates, including HSP90, HSP70, and Prp31. We showed, by native PAGE, that Txnip is involved in the formation of high molecular weight complexes (1000 to 1300 kDa) in the nuclear fraction of cells treated with glucose and bortezomib. DTT treatment partly dissolved these high molecular weight complexes, suggesting that Txnip forms redox sensitive high-order nucleoprotein complexes. RNAse treatment slightly decreased the complex and RNA-seq showed differential expression of RNAs in the complex between Txnip protein overexpressing and control cells, indicating the involvement of RNAs in the complex. These results collectively provide a model whereby Txnip exerts its functions through multiple binding partners, forming transient higher-order complexes to regulate other signaling molecules.
This dataset is supplementary to the submitted research by Ref. [1]. RNAs were extracted from high molecular weight complexes, prepared with 100 kDa filtration of HEK293 Tet-on cells stably transfected with either F-HA-Txnip-V5-His or control vector. Cells were stimulated with 1 μg/mL doxycycline for 24 h, followed by overnight stimulation with 100 μM 4-thiouridine (4sU), 20 mM glucose, and 1 μM bortezomib for 14h. The extracted RNAs from Txnip overexpressing cells compared with control cells was analyzed by RNA-seq. Differentially expressed mRNAs, long noncoding RNAs (lncRNA) and transcripts of uncertain coding potential (TUCPs) are shown. Gene ontology and KEGG enrichment of these differential expressed RNAs is presented.
Thioredoxin is a low molecular weight (approximately 12 kDa) redox protein, and protects against harmful stimuli such as oxida tive stress. Smoking evokes oxidative stress, among other biological responses. The clinical relevance of thioredoxin in smoking has not been fully investigated. Here, we examined the effects of smoking on serum and urinary thioredoxin levels, in comparison with various stress markers. Serum thioredoxin levels in the smoking group (10 subjects) were significantly higher than those of the non smoking group (5 subjects). After smoking, serum thioredoxin levels significantly decreased, while urinary levels significantly increased. On the other hand, the levels of serum and salivary cortisol, plasma norepinephrine, salivary amylase, salivary thioredoxin, and urinary 8 hydroxy 2' deoxyguanosine levels before and after smoking were not significantly different. These results suggest that a decrease in thioredoxin in the serum and the concomitant increase in the urine is a novel sensitive marker of biological stress responses induced by smoking. The change seems to be evoked by mechanisms different from hor monal or 8 hydroxy 2' deoxyguanosine forming stress responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.