Our results suggest that regular exercise training is a valuable adjunct to optimal medical management of HF, reducing platelet aggregation via antioxidant and anti-inflammatory effects, and, therefore, reducing the risk of future thrombotic events.
Studies show that the continuous consumption of fructose can lead to nonalcoholic fatty liver disease (NAFLD) and steatohepatitis. We aimed to investigate the role of Metformin in an animal model of liver injury caused by fructose intake, focusing on the molecular markers of lipogenesis, beta-oxidation, and antioxidant defenses. Male three months old C57BL/6 mice were divided into control group (C) and fructose group (F, 47% fructose), maintained for ten weeks. After, the groups received Metformin or vehicle for a further eight weeks: control (C), control + Metformin (CM), fructose (F), and fructose + Metformin (FM). Fructose resulted in hepatic steatosis, insulin resistance and lower insulin sensitivity in association with higher mRNA levels of proteins linked with de novo lipogenesis and increased lipid peroxidation. Fructose diminished mRNA expression of antioxidant enzymes, and of proteins responsible for mitochondrial biogenesis. Metformin reduced de novo lipogenesis and increased the expression of proteins related to mitochondrial biogenesis, thereby increasing beta-oxidation and decreasing lipid peroxidation. Also, Metformin upregulated the expression and activity of antioxidant enzymes, providing a defense against increased reactive oxygen species generation. Therefore, a significant reduction in triglyceride accumulation in the liver, steatosis and lipid peroxidation was observed in the FM group. In conclusion, fructose increases de novo lipogenesis, reduces the antioxidant defenses, and diminishes mitochondrial biogenesis. After an extended period of fructose intake, Metformin treatment, even in continuing the fructose intake, can reverse, at least partially, the liver injury and prevents NAFLD progression to more severe states.
Hypoxia-ischemia (HI) is characterized by a reduced supply of oxygen during pregnancy, which leads to both central nervous system and peripheral injuries in the foetus, resulting in impairment in its development. The purpose of this study was to investigate behavioural changes and systemic oxidative stress in adult animals that have been affected by HI during pregnancy. HI was induced by the occlusion of the maternal uterine artery with aneurysm clamps for a period of 45 min on the 18th gestational day. Animals from the sham group were submitted to same surgical procedure as the HI animals, without occlusion of the maternal uterine artery. The control group consisted of non-manipulated healthy animals. At postnatal day 90, the pups were submitted to behavioural tests followed by blood collection. HI adult animals presented an increase in anxiety behaviour and a lack of habituation compared to both sham and control groups. Oxidative damage, assessed by protein and lipid oxidation in serum, did not differ between HI and sham-operated animals. However, HI animals presented reduced activity of the glutathione peroxidase enzyme and increased formation of nitrite, indicating alterations in the systemic antioxidant repair system. Our results suggest an association among HI, systemic oxidative stress and behavioural alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.