We study noncommutative geometry at the Quantum Mechanics level by means of a model where noncommutativity of both configuration and momentum spaces is considered. We analyze how this model affects the problem of the two-dimensional gravitational quantum well and use the latest experimental results for the two lowest energy states of neutrons in the Earth's gravitational field to establish an upper bound on the fundamental momentum scale introduced by noncommutativity, namely √ η 1 meV/c, a value that can be improved in the future by up to 3 orders of magnitude. We show that the configuration space noncommutativity has, in leading order, no effect on the problem. We also analyze some features introduced by the model, specially a correction to the presently accepted value of Planck's constant to 1 part in 10 24 .
We consider Noncommutative Quantum Mechanics with phase space noncommutativity. In particular, we show that a scaling of variables leaves the noncommutative algebra invariant, so that only the self-consistent effective parameters of the model are physically relevant. We also discuss the recently proposed relation of direct proportionality between the noncommutative parameters, showing that it has a limited applicability.
A non-variational technique for computing the stress-energy tensor is presented. The prescription is used, among other things, to obtain the correct field equations for Prasanna's highly nonlinear electrodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.