BackgroundIn the present study, we investigated the molecular mechanisms underlying the pro-apoptotic effects of quercetin (Qu) by evaluating the effect of Qu treatment on DNA methylation and posttranslational histone modifications of genes related to the apoptosis pathway. This study was performed in vivo in two human xenograft acute myeloid leukemia (AML) models and in vitro using HL60 and U937 cell lines.ResultsQu treatment almost eliminates DNMT1 and DNMT3a expression, and this regulation was in part STAT-3 dependent. The treatment also downregulated class I HDACs. Furthermore, treatment of the cell lines with the proteasome inhibitor, MG132, together with Qu prevented degradation of class I HDACs compared to cells treated with Qu alone, indicating increased proteasome degradation of class I HDACS by Qu. Qu induced demethylation of the pro-apoptotic BCL2L11, DAPK1 genes, in a dose- and time-dependent manner. Moreover, Qu (50 μmol/L) treatment of cell lines for 48 h caused accumulation of acetylated histone 3 and histone 4, resulting in three- to ten fold increases in the promoter region of DAPK1, BCL2L11, BAX, APAF1, BNIP3, and BNIP3L. In addition, Qu treatment significantly increased the mRNA levels of all these genes, when compared to cells treated with vehicle only (control cells) (*p < 0.05).ConclusionsIn summary, our results showed that enhanced apoptosis, induced by Qu, might be caused in part by its DNA demethylating activity, by HDAC inhibition, and by the enrichment of H3ac and H4ac in the promoter regions of genes involved in the apoptosis pathway, leading to their transcription activation.
We studied the effects of Chlorella vulgaris (CV) on the interaction between stromal and hematopoietic stem cells in normal and Ehrlich ascites tumor (EAT)-bearing mice. Long-term bone marrow culture (LTBMC), cytokine production, spleen mononuclear cells (SMC) proliferation (SCP), colony stimulating activity (CSA), and NK cells activity were evaluated. In tumor bearers, reduced capacity of stromal cell layer to support the growth and differentiation of granulocyte-macrophage progenitor cells (CFU-GM), concomitantly to decreased numbers of total nonadherent cells in LTBMC and reduced local production of IL-6 and IL-1α, were observed. Presence of the tumor has not altered the number of stromal adherent cells. CV treatment restored the ability of stromal cells from EAT-bearing mice to produce IL-6 and IL-1α, which was consistent with increased number of nonadherent cells and higher ability to display CFU-GM in vitro. EAT growth increased SCP, serum CSA, and IL-10 production and concurrently depressed NK cell activity and the secretion of IL-2, IFN-γ, and TNF-α. Treatment of tumor-bearing mice with CV augmented CSA, SMC proliferation, NK cell activity, and the production of IL-2, IFN-γ, and TNF-α, whereas IL-10 levels where reduced. Our results suggest that CV modulates immunehematopoietic cell activity and disengages tumor-induced suppression of these responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.