The measurement of trace amounts of water in process gases is of paramount importance to a number of manufacturing processes. Water is considered to be one of the most difficult impurities to remove from gas supply systems and there is strong evidence that the presence of water contamination in semiconductor gases has a measurable impact on the quality and performance of devices. Consequently, semiconductor manufacturers are constantly reducing target levels of water in purge and process gases. As the purity of gases improves, the problem of quantifying contamination and ensuring that the gases are within specification at the point of use becomes more challenging. There are several established techniques for detecting trace water vapour in process gases. These include instruments based on the chilled mirror principle which measures the dew-point of the gas and the quartz crystal adsorption principle which measures the adsorption of water vapour into a crystal with a hygroscopic coating. Most recently, spectroscopic instruments such as those employing cavity ring-down spectroscopy (CRDS) have become available. The calibration of such instruments is a difficult exercise because of the very limited availability of accurate water vapour standards. This CCQM key comparison aims to assess the analytical capabilities of laboratories for measuring the composition of 10 μmol mol-1 water vapour in nitrogen. KEY WORDS FOR SEARCH Metrology, traceability, water vapour, process gas, advance manufacturing Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
This report presents the results of CCQM-K93, a key comparison between 13 National Measurement Institutes (NMIs), which tested the capability of the NMIs to prepare standard gas mixtures of ethanol at a nominal amount fraction of 120 µmol/mol in nitrogen. This composition is typical of the levels used to calibrate evidential breath analysers in many countries. Such standards fulfill the agreed requirements of the International Organization of Legal Metrology (OIML) for the calibration of evidential breath-alcohol analysers.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
The key comparison CCQM-K76 was designed to test the capabilities of the participants to measure and certify sulfur dioxide in nitrogen, and to provide supporting evidence for the CMCs of these institutes for sulfur dioxide. Also, as sulfur dioxide is designated a core compound, and the 100 µmol/mol concentration is within the designated core compound concentration range, this comparison was also designed to demonstrate core capabilities of institutes which qualify under the rules of the Gas Analysis Working Group.The results of all 16 participants in this key comparison, except for three, are consistent with their key comparisons reference values. The three participants which are outside the KCRV interval are NIM, SMU and NPLI. This comparison may be used to demonstrate core analytical capabilities in accordance with the rules and procedures of the CCQM Gas Analysis Working group.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
The capabilities for the preparation of certified reference materials of carbon monoxide, carbon dioxide, and propane in nitrogen have been compared. The participating national metrology institutes each submitted a gravimetrically prepared gas mixture of a specified target composition typical for the automotive industry to the coordinating laboratory. All mixtures were analyzed by the coordinating laboratory using a gas chromatograph equipped with a thermal conductivity detector in three runs under repeatable conditions. Based on the calibration curve, reference values were assigned to the amount fractions of carbon monoxide, carbon dioxide, and propane. The degrees of equivalence were established as the difference between the gas composition as calculated from preparation and the measured one, and its associated uncertainty. All participants obtained satisfactory results.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
The first key comparison on carbon monoxide (CO) in nitrogen dates back to 1992 (CCQM-K1a). It was one of the first types of gas mixtures that were used in an international key comparison. Since then, numerous national metrology institutes (NMIs) have been setting up facilities for gas analysis, and have developed claims for their Calibration and Measurement Capabilities (CMCs) for these mixtures. Furthermore, in the April 2005 meeting of the CCQM (Consultative Committee for Amount of Substance) Gas Analysis Working Group, a policy was proposed to repeat key comparisons for stable mixtures every 10 years. This comparison was performed in line with the policy proposal and provided an opportunity for NMIs that could not participate in the previous comparison. NMISA from South Africa acted as the pilot laboratory.Of the 25 participating laboratories, 19 (76%) showed satisfactory degrees of equivalence to the gravimetric reference value. The results show that the CO concentration is not influenced by the measurement method used, and from this it may be concluded that the pure CO, used to prepare the gas mixtures, was not 13C-isotope depleted. This was confirmed by the isotope ratio analysis carried out by KRISS on a 1% mixture of CO in nitrogen, obtained from the NMISA.There is no indication of positive or negative bias in the gravimetric reference value, as the results from the different laboratories are evenly distributed on both sides of the key comparison reference value.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.