Breast cancer accounts for the highest number of female deaths worldwide. Early detection of the disease is essential to increase the chances of treatment and cure of patients. Infrared thermography has emerged as a promising technique for diagnosis of the disease due to its low cost and that it does not emit harmful radiation, and it gives good results when applied in young women. This work uses convolutional neural networks in a database of 440 infrared images of 88 patients, classifying them into two classes: normal and pathology. During the training of the networks, we use transfer learning of the following convolutional neural network architectures: AlexNet, GoogLeNet, ResNet-18, VGG-16, and VGG-19. Our results show the great potential of using deep learning techniques combined with infrared images in the aid of breast cancer diagnosis.
Breast cancer kills a large number of women around the world. Infrared thermography is a promising screening technique which does not involve harmful radiation for the patient and has a relatively low cost. This work proposes an approach for classifying patients into three different classes using infrared images: healthy patients, patients with benign changes and patients with cancer (malignant changes). A set of features is extracted from each image and two approaches are used in the classification process. The first is based on Artificial Neural Networks while the second is based on Support Vector Machines. The proposed approach shows a great potential to be used as a screening diagnosis technique for early breast cancer detection.
Objectives:
Temporal Enhanced Ultrasound (TeUS) is a new ultrasound-based imaging technique that provides tissue-specific information. Recent studies have shown the potential of TeUS for improving tissue characterization in prostate cancer diagnosis. We study the temporal properties of TeUS – temporal order and length – and present a new framework to assess their impact on tissue information.
Methods:
We utilize a probabilistic modeling approach using Hidden Markov Models (HMMs) to capture the temporal signatures of malignant and benign tissues from TeUS signals of 9 patients. We model signals of benign and malignant tissues (284 and 286 signals, respectively) in their original temporal order as well as under order permutations. We then compare the resulting models using the Kullback-Liebler divergence and assess their performance differences in characterization. Moreover, we train HMMs using TeUS signals of different durations and compare their model performance when differentiating tissue types.
Results:
Our findings demonstrate that models of order-preserved signals perform statistically significantly better (85% accuracy) in tissue characterization compared to models of order-altered signals (62% accuracy). The performance degrades as more changes in signal-order are introduced. Additionally, models trained on shorter sequences perform as accurately as models of longer sequences.
Conclusion:
The work presented here strongly indicates that temporal order has substantial impact on TeUS performance, thus it plays a significant role in conveying tissue-specific information. Further-more, shorter TeUS signals can relay sufficient information to accurately distinguish between tissue types.
Significance:
Under-standing the impact of TeUS properties facilitates the process of its adopting in diagnostic procedures and provides insights on improving its acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.