Ischemia-reperfusion (IR) injury is directly related to the formation of reactive oxygen species (ROS), endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients.
Long pentraxin 3 (PTX3), an acute-phase protein, is a newly clarified mediator for innate immunity and inflammation. As a soluble pattern recognition receptor, it has a nonredundant role in antifungal infection. Overexpression of PTX3 worsens acute lung injury. The lung epithelium is a critical factor in defense against pulmonary pathogens; it is also involved in acute inflammatory responses related to tissue injury. However, very little is known about how PTX3 is regulated in the lung epithelium. In this study, we found that i.v. injection of LPS induced PTX3 expression in rat lung alveolar epithelium. Using human lung cell lines and primary epithelial cells, we found that PTX3 expression was significantly up-regulated by TNF-α in a time- and dose-dependent manner, but not by LPS. Pretreatment with either actinomycin D or cycloheximide abolished TNF-α-induced PTX3 expression, indicating the requirement for both transcriptional and translational regulation. The TNF-α-induced PTX3 expression was blocked by SP600125, a JNK-specific inhibitor, but not by the inhibitors against NF-κB, ERKs, or p38 MAPK. Knockdown of either JNK1 or JNK2 with small interfering RNA also significantly reduced the regulated PTX3 expression. Thus, lung epithelial cells appear to be a major local source for PTX3 production, which could be induced in vivo from these cells by LPS or other inflammatory stimuli, and may be an important mediator for host defense and tissue damage. The importance of the JNK pathway for the regulated PTX3 expression may be a potential target for its regulation in the lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.