The level of attrition on drug discovery, particularly at advanced stages, is very high due to unexpected adverse drug reactions (ADRs) caused by drug candidates, and thus, being able to predict undesirable responses when modulating certain protein targets would contribute to the development of safer drugs and have important economic implications. On the one hand, there are a number of databases that compile information of drug–target interactions. On the other hand, there are a number of public resources that compile information on drugs and ADR. It is therefore possible to link target and ADRs using drug entities as connecting elements. Here, we present T-ARDIS (Target—Adverse Reaction Database Integrated Search) database, a resource that provides comprehensive information on proteins and associated ADRs. By combining the information from drug–protein and drug–ADR databases, we statistically identify significant associations between proteins and ADRs. Besides describing the relationship between proteins and ADRs, T-ARDIS provides detailed description about proteins along with the drug and adverse reaction information. Currently T-ARDIS contains over 3000 ADR and 248 targets for a total of more 17 000 pairwise interactions. Each entry can be retrieved through multiple search terms including target Uniprot ID, gene name, adverse effect and drug name. Ultimately, the T-ARDIS database has been created in response to the increasing interest in identifying early in the drug development pipeline potentially problematic protein targets whose modulation could result in ADRs. Database URL: http://www.bioinsilico.org/T-ARDIS
Drug discovery attrition rates, particularly at advanced clinical trial stages, are high because of unexpected adverse drug reactions (ADR) elicited by novel drug candidates. Predicting undesirable ADRs produced by the modulation of certain protein targets would contribute to developing safer drugs, thereby reducing economic losses associated with high attrition rates. As opposed to the more traditional drug-centric approach, we propose a target-centric approach to predict associations between protein targets and ADRs. The implementation of the predictor is based on a machine learning classifier that integrates a set of eight independent network-based features. These include a network diffusion-based score, identification of protein modules based on network clustering algorithms, functional similarity among proteins, network distance to proteins that are part of safety panels used in preclinical drug development, set of network descriptors in the form of degree and betweenness centrality measurements, and conservation. This diverse set of descriptors were used to generate predictors based on different machine learning classifiers ranging from specific models for individual ADR to higher levels of abstraction as per MEDDRA hierarchy such as system organ class. The results obtained from the different machine-learning classifiers, namely, support vector machine, random forest, and neural network were further analyzed as a meta-predictor exploiting three different voting systems, namely, jury vote, consensus vote, and red flag, obtaining different models for each of the ADRs in analysis. The level of accuracy of the predictors justifies the identification of problematic protein targets both at the level of individual ADR as well as a set of related ADRs grouped in common system organ classes. As an example, the prediction of ventricular tachycardia achieved an accuracy and precision of 0.83 and 0.90, respectively, and a Matthew correlation coefficient of 0.70. We believe that this approach is a good complement to the existing methodologies devised to foresee potential liabilities in preclinical drug discovery. The method is available through the DocTOR utility at GitHub (https://github.com/cristian931/DocTOR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.