Twenty-nine flavonoid glycosides were identified in the aqueous extract (PC) of Petroselinum crispum var. crispum leaves and apiin, the major compound, was isolated thereof.
Extracts and essential oils from plants are important natural sources of pesticides. These compounds are considered an alternative to control ectoparasites of veterinary importance. Schinus molle, an endemic species of Brazil, produces a high level of essential oil and several other compounds. The aim of this work was to determinate the chemical composition of extracts and essential oils of S. molle and further to evaluate the activity against eggs and adults of Ctenocephalides felis felis, a predominant flea that infests dogs and cats in Brazil. In an in vitro assay, the non-polar (n-hexane) extract showed 100% efficacy (800 µg cm(-2); LD50 = 524·80 µg cm(-2)) at 24 and 48 h. Its major compound was lupenone (50·25%). Essential oils from fruits and leaves were evaluated, and had 100% efficacy against adult fleas at 800 µg cm(-2) (LD50 = 353·95 µg cm(-2)) and at 50 µg cm(-2) (LD50 = 12·02 µg cm(-2)), respectively. On the other hand, the essential oil from fruits and leaves was not active against flea eggs. This is the first study that reports the insecticidal effects of essential oils and extracts obtained from Schinus molle against Ctenocephalides felis felis.
In Saccharomyces cerevisiae, accumulation of cadmium-glutathione complex in cytoplasm inhibits cadmium absorption, glutathione transferase 2 is required for the formation of the complex and the vacuolar gamma-glutamyl transferase participates of the first step of glutathione degradation. Here, we proposed that Lap4, a vacuolar amino peptidase, is involved in glutathione catabolism under cadmium stress. Saccharomyces cerevisiae cells deficient in Lap4 absorbed almost 3-fold as much cadmium as the wild-type strain (wt), probably due to the lower rate of cadmium-glutathione complex synthesis in the cytoplasm. In wt, but not in lap4 strain, the oxidized/reduced GSH ratio and the Gtt activity increased in response to cadmium, confirming that the mutant is deficient in the synthesis of the complex probably because the degradation of vacuolar glutathione is impaired. Thus, under cadmium stress, Lap4 and gamma-glutamyl transferase seem to work together to assure an efficient glutathione turnover stored in the vacuole.
Cadmium (Cd(2+)) is a toxic heavy metal which triggers several toxic effects in eukaryotes, including neurotoxicity and impaired calcium metabolism. In the model organism Saccharomyces cerevisiae, the best characterized pathway for Cd(2+) detoxification involves conjugation with glutathione (GSH) and subsequent transport to vacuoles by Ycf1p, an ATPase homologous to human MRP1 (Multidrug resistance associated protein 1). However, Cd(2+) tolerance also can be mediated by Pmr1p, a Ca(2+) pump located in the Golgi membrane, possibly through to the secretory pathway. Herein, we showed that inactivation of the PMR1 gene, alone or simultaneously with YCF1, delayed initial Cd(2+) capture compared to wild-type (WT) cells. In addition, Cd(2+) treatment altered the expression profile of yeast internal Ca(2+) transporters; specifically, PMC1 gene expression is induced substantially by the metal in WT cells, and this induction is stronger in mutants lacking YCF1. Taken together, these results indicate that, in addition to Pmr1p, the vacuolar Ca(2+)-ATPase Pmc1p also helps yeast cells cope with Cd(2+) toxicity. We propose a model where Pmc1p and Pmr1p Ca(2+)-ATPase function in cooperation with Ycf1p to promote Cd(2+) detoxification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.