Fluorescent Organic Nanoparticles (FONs), prepared by self-aggregation of dedicated dyes in water, represent a promising green alternative to the toxic quantum dots (QDs) for bioimaging purposes. In the present paper, we describe the synthesis and photophysical properties of new dipolar push-pull derivatives built from thieno[3,2-b]thiophene as a π-conjugated bridge that connects a triphenylamine moiety bearing various bulky substituents as electron-releasing moiety to acceptor end-groups of increasing strength (i.e., aldehyde, dicyanovinyl and diethylthiobarbiturate). All dyes display fluorescence properties in chloroform, which shifts from the green to the NIR range depending on the molecular polarization (i.e., strength of the end-groups) as well as a large two-photon absorption (TPA) band response in the biological spectral window (700-1000 nm). The TPA bands show a bathochromic shift and hyperchromic effect with increasing polarization of the dyes with maximum TPA cross-section reaching 2000 GM for small size chromophore. All dyes are found to form stable and deeply colored nanoparticles (20-45 nm in diameter) upon nanoprecipitation in water. Although their fluorescence is strongly reduced upon aggregation, all nanoparticles show large one-photon (up to 10 8 M −1 ·cm −1 in the visible region) and two-photon (up to 10 6 GM in the NIR) brightness. Interestingly, both linear and non-linear optical properties are significantly affected by interchromophoric interactions, which are promoted by the molecular confinement and modulated by both the dipolar strength and the presence of the bulky groups. Finally, we exploited the photophysical properties of the FONs to design optimized core-shell nanoparticles built from a pair of complementary dipolar dyes that promotes an efficient core-to-shell FRET process. The resulting molecular-based core-shell nanoparticles combine large two-photon absorption and enhanced emission both located in the NIR spectral region, thanks to a major amplification (by a factor of 20) of the core fluorescence quantum yield. These novel nanoparticles, which combine huge one-and two-photon brightness, hold major promise for in vivo optical bioimaging.
International audienceTwo bolaamphiphilic quadrupoles built from a fluorene core conjugated with azine endgroups were designed and successfully used to stain GUV membranes. Their quadrupolar character induces both a shift of the pKa values close to the physiological pH and large two-photon absorption responses (i.e. over 1000 GM for acidic forms). As such they hold promise as ratiometric two-photon pH probes for monitoring slight variations of pH near cell membranes using two-photon excitation in the NIR regio
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.