Our paper studies the anatomy of the discovery of the Higgs boson at the Large Hadron Collider (LHC). We investigate the phases of this discovery, which led to a crucial reconfiguration of the model landscape of elementary particle physics and eventually to a confirmation of the Standard Model (SM). A keyword search of preprints covering the electroweak symmetry breaking (EWSB) sector of particle physics, along with an examination of physicists' own understanding of the discovery as documented in semiannual conferences, has allowed us an empirical investigation of its model dynamics. From our analyses we draw two main philosophical lessons concerning the nature of scientific reasoning in a complex experimental and theoretical environment. For one, from a confirmation standpoint, some SM alternatives could be considered even more confirmed by the Higgs discovery than the SM. Nevertheless, the SM largely remains the commonly accepted account of EWSB. We present criteria for comparing degrees of confirmation and expose some limits of a purely logical approach to understanding the Higgs discovery as a victory for the SM. Second, we understand the persistence of SM alternatives in the face of disfavourable evidence by borrowing the Lakatosian concept of a research programme, where the core idea behind a group of models survives, while other aspects adapt to incoming data. In order to apply this framework to the model landscape of EWSB, we must introduce a new category of research programme, the modelgroup, and we test its viability using the example of composite Higgs models.
Experiments in particle physics have hitherto failed to produce any significant evidence for the many explicit models of physics beyond the Standard Model (BSM) that had been proposed over the past decades. As a result, physicists have increasingly turned to modelindependent strategies as tools in searching for a wide range of possible BSM effects. In this paper, we describe the Standard Model Effective Field Theory (SM-EFT) and analyse it in the context of the philosophical discussions about models, theories, and (bottom-up) effective field theories. We find that while the SM-EFT is a quantum field theory, assisting experimentalists in searching for deviations from the SM, in its general form it lacks some of the characteristic features of models. Those features only come into play if put in by hand or prompted by empirical evidence for deviations. Employing different philosophical approaches to models, we argue that the case study suggests not to take a view on models that is overly permissive because it blurs the lines between the different stages of the SM-EFT research strategies and glosses over particle physicists' motivations for undertaking this bottom-up approach in the first place. Looking at EFTs from the perspective of modelling does not require taking a stance on some specific brand of realism or taking sides in the debate between reduction and emergence into which EFTs have recently been embedded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.