Poleward undercurrents are well-known features in Eastern Boundary upwelling systems. In the California Current upwelling system, the California poleward undercurrent has been widely studied, and it has been demonstrated that it transports nutrients from the equatorial waters to the northern limit of the subtropical gyre. However, in the Canary Current upwelling system, the Canary intermediate poleward undercurrent (CiPU) has not been properly characterized, despite recent studies arguing that the dynamics of the eastern Atlantic play an important role in the Atlantic meridional overturning circulation, specifically on its seasonal cycle. Here, we use trajectories of Argo floats and model simulations to characterize the CiPU, including its seasonal variability and its driving mechanism. The Argo observations show that the CiPU flows from 26°N, near Cape Bojador, to approximately 45°N, near Cape Finisterre, and flows deeper than any poleward undercurrent in other eastern boundaries, with a core at a mean depth of around 1000 dbar. Model simulations manifest that the CiPU is driven by the meridional alongshore pressure gradient due to general ocean circulation and, contrary to what is observed in the other eastern boundaries, is still present at 1000 dbar due the pressure gradient between the Antarctic Intermediate Waters in the south and Mediterranean Outflow waters in the north. The high seasonal variability of the CiPU, with its maximum strength in fall, and the minimum in spring, is due to the poleward extension of AAIW, forced by Ekman pumping in the tropics.
The South Atlantic Ocean plays a key role in the heat exchange of the climate system, as it hosts the returning flow of the Atlantic Meridional Overturning Circulation (AMOC). To gain insights on this role, using data from three hydrographic cruises conducted in the South Atlantic Subtropical gyre at 34.5°S, 24°S, and 10°W, we identify water masses and compute absolute geostrophic circulation using inverse modeling. In the upper layers, the currents describe the South Atlantic anticyclonic gyre with the northwest flowing Benguela Current (26.3 ± 2.0 Sv at 34.5°S, and 21.2 ± 1.8 Sv at 24°S) flowing above the Mid‐Atlantic Ridge (MAR) between 22.4°S and 28.4°S (−19.2 ± 1.4 Sv), and the southward flowing Brazil Current (−16.5 ± 1.3 Sv at 34.5°S, and −7.3 ± 0.9 Sv at 24°S); the deep layers feature the southward transports of Deep Western Boundary Current (−13.9 ± 3.0 Sv at 34.5°S, and −8.7 ± 3.8 Sv at 24°S) and Deep Eastern Boundary Current (−15.1 ± 3.5 Sv at 34.5°S, and −16.3 ± 4.7 Sv at 24°S), with the interbasin west‐to‐east flow close to 24°S (7.5 ± 4.4 Sv); the abyssal waters present northward mass transports through the Argentina Basin (5.6 ± 1.1 Sv at 34.5°S, and 5.8 ± 1.5 Sv at 24°S) and Cape Basin (8.6 ± 3.5 Sv at 34.5°S–3.0 ± 0.8 Sv at 24°S) before returning southward (−2.2 ± 0.7 Sv at 24°S to −7.9 ± 3.6 Sv at 34.5°S), without any interbasin exchange across the MAR. In addition, we compute the upper AMOC strength (14.8 ± 1.0 and 17.5 ± 0.9 Sv), the equatorward heat transport (0.30 ± 0.05 and 0.80 ± 0.05 PW), and the freshwater flux (0.18 ± 0.02 and −0.07 ± 0.02 Sv) at 34.5°S and 24°S, respectively.
<p>The A20 is a meridional hydrographic section located at 52&#186;W on the western North Atlantic Subtropical Gyre that encloses the path of the water masses of the Atlantic Meridional Overturning Circulation (AMOC). Using data from three A20 hydrographic cruises carried out in 1997, 2003 and 2012 together with LADCP-SADCP data and the velocities from an inverse box model, the circulation of the western North Atlantic Subtropical Gyre is estimated. The main poleward current of the AMOC is the Gulf Stream (GS) which carries 129.0&#177;10.5 Sv in 2003 and 110.4&#177;12.2 Sv in 2012. Due to the seasonality, the GS position is shifted southward in 2012 - relative to that of 2003 - as both cruises took place in different seasons. In opposite direction, the Deep Western Boundary Current (DWBC) crosses the section twice, first at 39.3-43.2&#186;N (-34.9&#177;7.5 Sv in 2003 and -25.3&#177;9.4 Sv in 2012) and then at 7.0-11.7&#186;N (42.0&#177;8.0 Sv in 2003 and 48.0&#177;8.1 Sv in 2012). Additionally, two zonal currents contribute with westward transport below 20&#186;N: the North Equatorial Current and the North Brazil Current; with a net value of -28.0&#177;4.1 Sv in 2003 and -36.7&#177;3.6 Sv in 2012.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.