Nowadays, many online communities provide means for users to contribute in the evaluation of community created media by tagging, commenting and rating. Judging the users expertise in such collaborative systems is an important issue. As these systems are becoming increasingly popular, they are attackable, e.g. by Sybil Attacks. Thus, an effective expert ranking strategy must be robust to such attacks. In this paper, we propose MHITS, an algorithm to rank users' expertise by exploiting the number of users' fair ratings and direct trust users gain in the online community. We integrate SumUp, a Sybil-resilient algorithm, into MHITS algorithm as a robust ranking strategy. Experimental results show the effectiveness of the proposed method, which can ensure that the highly ranked experts are highly trusted users and provide the high number of fair ratings for the relevant media. We contribute to the experimental evaluation of algorithms for online systems, fighting malicious behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.