Single-stranded oligonucleotides (ON) comprise a promising therapeutic platform that enables selective modulation of currently undruggable targets. The development of novel ON drug candidates has demonstrated excellent efficacy, but in certain cases also some safety liabilities were reported. Among them are events of thrombocytopenia, which have recently been evident in late stage trials with ON drugs. The underlying mechanisms are poorly understood and the risk for ON candidates causing such events cannot be sufficiently assessed pre-clinically. We investigated potential thrombocytopenia risk factors of ONs and implemented a set of in vitro assays to assess these risks. Our findings support previous observations that phosphorothioate (PS)-ONs can bind to platelet proteins such as platelet collagen receptor glycoprotein VI (GPVI) and activate human platelets in vitro to various extents. We also show that these PS-ONs can bind to platelet factor 4 (PF4). Binding to platelet proteins and subsequent activation correlates with ON length and connected to this, the number of PS in the backbone of the molecule. Moreover, we demonstrate that locked nucleic acid (LNA) ribosyl modifications in the wings of the PS-ONs strongly suppress binding to GPVI and PF4, paralleled by markedly reduced platelet activation. In addition, we provide evidence that PS-ONs do not directly affect hematopoietic cell differentiation in culture but at higher concentrations show a pro-inflammatory potential, which might contribute to platelet activation. Overall, our data confirm that certain molecular attributes of ONs are associated with a higher risk for thrombocytopenia. We propose that applying the in vitro assays discussed here during the lead optimization phase may aid in deprioritizing ONs with a potential to induce thrombocytopenia.
Idiotype vaccination for follicular lymphoma is primarily being developed as remission consolidation after chemotherapy. We investigated idiotype vaccination as primary intervention for treatmentnaive indolent B-cell lymphoma and in a separate cohort as remission consolidation after chemotherapy to assess immunization-induced immune responses in relation to progression-free survival
Traditional drug safety assessment often fails to predict complications in humans, especially when the drug targets the immune system. Here, we show the unprecedented capability of two human Organs-on-Chips to evaluate the safety profile of T-cell bispecific antibodies (TCBs) targeting tumor antigens. Although promising for cancer immunotherapy, TCBs are associated with an on-target, off-tumor risk due to low levels of expression of tumor antigens in healthy tissues. We leveraged in vivo target expression and toxicity data of TCBs targeting folate receptor 1 (FOLR1) or carcinoembryonic antigen (CEA) to design and validate human immunocompetent Organs-on-Chips safety platforms. We discovered that the Lung-Chip and Intestine-Chip could reproduce and predict target-dependent TCB safety liabilities, based on sensitivity to key determinants thereof, such as target expression and antibody affinity. These novel tools broaden the research options available for mechanistic understandings of engineered therapeutic antibodies and assessing safety in tissues susceptible to adverse events.
In B-cells, activation-induced cytidine deaminase (AID) is required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. AID introduces mutations in immunoglobulin variable regions (IGV) during B-cell receptor affinity maturation, but may also introduce aberrant mutations into non-immunoglobulin genes, most commonly BCL6. Follicular lymphoma (FL) B-cells constitutively express AID and undergo CSR, SHM and aberrant SHM. We have studied AID expression, the presence of SHM mutations, CSR, and aberrant SHM in BCL6 in a cohort of 75 FL patients. Whereas IgM-expressing (non-switched) FL were characterized by an expected positive correlation between AID and IGV and BCL6 mutations, isotype-switched FL showed dissociation between AID expression and aberrant SHM, and inverse correlation between SHM and AID expression. Our results unveil two manifest biological subgroups of FL and indicate that the specific dissociation between AID and SHM after isotype switch may correlate with the clinical outcome of this heterogeneous disease.
Single stranded oligonucleotides (SSO) represent a novel therapeutic modality that opens new space to address previously undruggable targets. In spite of their proven efficacy, the development of promising SSO drug candidates has been limited by reported cases of SSO-associated hepatotoxicity. The mechanisms of SSO induced liver toxicity are poorly understood, and up to now no preclinical in vitro model has been established that allows prediction of the hepatotoxicity risk of a given SSO. Therefore, preclinical assessment of hepatic liability currently relies on rodent studies that require large cohorts of animals and lengthy protocols. Here, we describe the establishment and validation of an in vitro assay using primary hepatocytes that recapitulates the hepatotoxic profile of SSOs previously observed in rodents. In vitro cytotoxicity upon unassisted delivery was measured as an increase in extracellular lactate dehydrogenase (LDH) levels and concomitant reduction in intracellular glutathione and ATP levels after 3 days of treatment. Furthermore, toxic, but not safe, SSOs led to an increase in miR-122 in cell culture supernatants after 2 days of exposure, revealing the potential use of miR122 as a selective translational biomarker for detection of SSO-induced hepatotoxicity. Overall, we have developed and validated for the first time a robust in vitro screening assay for SSO liver safety profiling which allows rapid prioritization of candidate molecules early on in development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.