To evaluate health-related quality of life (HRQL), social competence, and behavioral problems in children with perinatal HIV infection receiving highly active antiretroviral therapy (HAART), a cross-sectional study was performed at the Department of Pediatrics, University of Brescia. We evaluated HRQL, social competence, and behavioral problems in 27 HIV-infected children compared with age and sex-matched control subjects using the Pediatric Quality of Life Inventory (PedsQL) and the Child Behavior Checklist (CBCL), respectively. On the PedsQL 4.0 Generic Core Scale, HIV-infected subjects displayed significantly reduced physical (p=0.043) and psychosocial health (p=0.021) functioning, particularly at school (p=0.000), compared with healthy subjects, resulting in a significantly reduced total score (p=0.013). Assessment of social competence and the behavioral features of HIV-infected children by means of the CBCL revealed severe limitations of functioning in HIV-infected children who had impaired social ability. Children with HIV-RNA above the threshold level of 50 had higher scores on the CBCL delinquent behavior (p=0.021) and school competence (p=0.025) subsets. Although the introduction of HAART regimens has prolonged the survival of HIV-infected children, other factors, including disease morbidity and familial and environmental conditions, negatively affect their quality of life, thereby contributing to increased risk for behavioral problems.
Cellular behavior is strongly influenced by the architecture and pattern of its interfacing extracellular matrix (ECM). For an artificial culture system which could eventually benefit the translation of scientific findings into therapeutic development, the system should capture the key characteristics of a physiological microenvironment. At the same time, it should also enable standardized, high throughput data acquisition. Since an ECM is composed of different fibrous proteins, studying cellular interaction with individual fibrils will be of physiological relevance. In this study, we employ near-field electrospinning to create ordered patterns of collagenous fibrils of gelatin, based on an acetic acid and ethyl acetate aqueous co-solvent system. Tunable conformations of micro-fibrils were directly deposited onto soft polymeric substrates in a single step. We observe that global topographical features of straight lines, beads-on-strings, and curls are dictated by solution conductivity; whereas the finer details such as the fiber cross-sectional profile are tuned by solution viscosity. Using these fibril constructs as cellular assays, we study EA.hy926 endothelial cells' response to ROCK inhibition, because of ROCK's key role in the regulation of cell shape. The fibril array was shown to modulate the cellular morphology towards a pre-capillary cord-like phenotype, which was otherwise not observed on a flat 2-D substrate. Further facilitated by quantitative analysis of morphological parameters, the fibril platform also provides better dissection in the cells' response to a H1152 ROCK inhibitor. In conclusion, the near-field electrospun fibril constructs provide a more physiologically-relevant platform compared to a featureless 2-D surface, and simultaneously permit statistical single-cell image cytometry using conventional microscopy systems. The patterning approach described here is also expected to form the basics for depositing other protein fibrils, seen among potential applications as culture platforms for drug screening.
We use a resistive-pulse technique to analyze molecular hybrids of single-wall carbon nanotubes (SWNTs) wrapped in either single-stranded DNA or protein. Electric fields confined in a glass capillary nanopore allow us to probe the physical size and surface properties of molecular hybrids at the single-molecule level. We find that the translocation duration of a macromolecular hybrid is determined by its hydrodynamic size and solution mobility. The event current reveals the effects of ion exclusion by the rod-shaped hybrids and possible effects due to temporary polarization of the SWNT core. Our results pave the way to direct sensing of small DNA or protein molecules in a large unmodified solid-state nanopore by using nanofilaments as carriers.
Autosomal-dominant hyper-IgE syndrome (AD-HIES) is a primary immunodeficiency caused by STAT3 mutations. This inherited condition is characterized by eczema, staphylococcal cold abscesses and recurrent pulmonary infections. Given that STAT3 is involved in IL-10 signaling, we examined the immunoregulatory role of IL-10 in inflammation by studying the effects of IL-10 on monocytes, neutrophils and monocyte-derived DCs from HIES subjects. Analysis of gene expression in PBMCs and neutrophils isolated from HIES patients and stimulated with LPS in the presence of IL-10 showed reduced expression of IL1RN, which encodes IL-1 receptor antagonist (IL-1ra), and SOCS3 mRNA but increased CXCL8 mRNA expression. Moreover, secretion of the anti-inflammatory protein IL-1ra was reduced in AD-HIES patients. DCs from HIES patients secreted higher levels of TNF-a, IL-6 and, to a lesser extent, IL-12 when these cells were cultured in the presence of IL-10. These results suggest that IL-10 activity is affected in myeloid cells (e.g. monocytes, DCs) of HIES patients. Impairment of IL-10 signaling in patients with AD-HIES might result in an altered balance between pro-inflammatory and anti-inflammatory signals and might lead to persistent inflammation and delayed healing after infections.
With the push to reduce in vivo approaches, the demand for microphysiological models that recapitulate the in vivo settings in vitro is dramatically increasing. Here, we present an extracellular matrix-integrated microfluidic chip with a rounded microvessel of ~100 µm in diameter. Our system displays favorable characteristics for broad user adaptation: simplified procedure for vessel creation, minimised use of reagents and cells, and the ability to couple live-cell imaging and image analysis to study dynamics of cell-microenvironment interactions in 3D. Using this platform, the dynamic process of single breast cancer cells (LM2-4175) exiting the vessel lumen into the surrounding extracellular matrix was tracked. Here, we show that the presence of endothelial lining significantly reduced the cancer exit events over the 15-hour imaging period: there were either no cancer cells exiting, or the fraction of spontaneous exits was positively correlated with the number of cancer cells in proximity to the endothelial barrier. The capability to map the z-position of individual cancer cells within a 3D vessel lumen enabled us to observe cancer cell transmigration ‘hot spot’ dynamically. We also suggest the variations in the microvessel qualities may lead to the two distinct types of cancer transmigration behaviour. Our findings provide a tractable in vitro model applicable to other areas of microvascular research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.