Nutraceuticals have gained increasing attention over the last years due to their potential value as therapeutic compounds formulated from natural sources. For instance, there is a wide range of literature about the cardioprotective properties of omega-3 lipids and the antioxidant value of some phenolic compounds, which are related to antitumoral activity. However, the value of nutraceuticals can be limited by their instability under gastric pH and intestinal fluids, their low solubility and absorption. That is why encapsulation is a crucial step in nutraceutical design. In fact, pharmaceutical nanotechnology improves nutraceutical stability and bioavailability through the design and production of efficient nanoparticles (NPs). Lipid nanoparticles protect the bioactive compounds from light and external damage, including the gastric and intestinal conditions, providing a retarded delivery in the target area and guaranteeing the expected therapeutic effect of the nutraceutical. This review will focus on the key aspects of the encapsulation of bioactive compounds into lipid nanoparticles, exploring the pharmaceutical production methods available for the synthesis of NPs containing nutraceuticals. Moreover, the most common nutraceuticals will be discussed, considering the bioactive compounds, their natural source and the described biological properties.
Microalgal biomass is a sustainable source of bioactive lipids with omega-3 fatty acids. The efficient extraction of neutral and polar lipids from microalgae requires alternative extraction methods, frequently combined with biomass pretreatment. In this work, a combined ultrasound and enzymatic process using commercial enzymes Viscozyme, Celluclast, and Alcalase was optimized as a pretreatment method for Nannochloropsis gaditana, where the Folch method was used for lipid extraction. Significant differences were observed among the used enzymatic pretreatments, combined with ultrasound bath or probe-type sonication. To further optimize this method, ranges of temperatures (35, 45, and 55 °C) and pH (4, 5, and 8) were tested, and enzymes were combined at the best conditions. Subsequently, simultaneous use of three hydrolytic enzymes rendered oil yields of nearly 29%, showing a synergic effect. To compare enzymatic pretreatments, neutral and polar lipids distribution of Nannochloropsis was determined by HPLC–ELSD. The highest polar lipids content was achieved employing ultrasound-assisted enzymatic pretreatment (55 °C and 6 h), whereas the highest glycolipid (44.54%) and PE (2.91%) contents were achieved using Viscozyme versus other enzymes. The method was applied to other microalgae showing the potential of the optimized process as a practical alternative to produce valuable lipids for nutraceutical applications.
To develop greener extraction alternatives for microalgae biomass, ultrasound assisted extraction (UAE) and pressurized liquid extraction (PLE) with different biobased solvents were investigated, demonstrating that both techniques are useful alternatives for algal lipid extraction. Specifically, Nannochloropsis gaditana lipids were extracted by UAE and PLE at different temperatures and extraction times with sustainable solvents like 2-Methyltetrahydrofuran (2-MeTHF) and its mixtures with ethanol and other alcohols. The best oil yields for both PLE and UAE of N. gaditana were achieved with the mixture of 2-MeTHF:ethanol (1:3), reaching yields of up to 16.3%, for UAE at 50 °C and up to 46.1% for PLE at 120 °C. Lipid composition of the extracts was analyzed by HPLC-ELSD and by GC-MS to determine lipid species and fatty acid profile, respectively. Different fractionation of lipid species was achieved with PLE and solvent mixtures of different polarity. Thus, for the extraction of glycolipids, ethanolic extracts contained higher amounts of glycolipids and EPA, probably due to the higher polarity of the solvent. The optimized method was applied to microalgae Isochrysis galbana and Tetraselmis chuii showing the potential of mixtures of biobased solvents like 2-methyl-THF and ethanol in different proportions to efficiently extract and fractionate lipids from microalgal biomass.
Damage to the retinal pigment epithelium, Bruch’s membrane and/or tissues underlying macula is known to increase the risk of age-related macular degeneration (AMD). AMD is commonly categorized in two distinct types, namely, the nonexudative (dry form) and the exudative (wet form). Currently, there is no ideal treatment available for AMD. Recommended standard treatments are based on the use of vascular endothelial growth factor (VEGF), with the disadvantage of requiring repeated intravitreal injections which hinder patient’s compliance to the therapy. In recent years, several synthetic and natural active compounds have been proposed as innovative therapeutic strategies against this disease. There is a growing interest in the development of formulations based on nanotechnology because of its important role in the management of posterior eye segment disorders, without the use of intravitreal injections, and furthermore, with the potential to prolong drug release and thus reduce adverse effects. In the same way, 3D bioprinting constitutes an alternative to regeneration therapies for the human retina to restore its functions. The application of 3D bioprinting may change the current and future perspectives of the treatment of patients with AMD, especially those who do not respond to conventional treatment. To monitor the progress of AMD treatment and disease, retinal images are used. In this work, we revised the recent challenges encountered in the treatment of different forms of AMD, innovative nanoformulations, 3D bioprinting, and techniques to monitor the progress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.