In this article we prove a classification theorem (Main Theorem) of real planar cubic vector fields which possess four distinct infinite singularities and eight invariant straight lines, including the line at infinity and including their multiplicities. This classification, which is taken modulo the action of the group of real affine transformations and time rescaling, is given in terms of invariant polynomials. The algebraic invariants and comitants allow one to verify for any given real cubic system with four infinite distinct singularities whether or not it has invariant lines of total multiplicity eight, and to specify its configuration of lines endowed with their corresponding real singularities of this system. The calculations can be implemented on computer.
In the article [16] the family of cubic polynomial differential systems possessing invariant straight lines of total multiplicity 9 was considered and 23 such classes of systems were detected. We recall that 9 invariant straight lines taking into account their multiplicities is the maximum number of straight lines that a cubic polynomial differential systems can have if this number is finite. Here we complete the classification given in [16] by adding a new class of such cubic systems and for each one of these 24 such classes we perform the corresponding first integral as well as its phase portrait. Moreover we present necessary and sufficient affine invariant conditions for the realization of each one of the detected classes of cubic systems with maximum number of invariant straight lines when this number is finite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.