Background and Aims Plants have the potential to adjust the configuration of their hydraulic system to maintain its function across spatial and temporal gradients. Species with wide environmental niches provide an ideal framework to assess intraspecific xylem adjustments to contrasting climates. We aimed to assess how xylem structure in the widespread species Nothofagus pumilio varies across combined gradients of temperature and moisture, and to what extent within-individual variation contributes to population responses across environmental gradients. Methods We characterized xylem configuration in branches of N. pumilio trees at five sites across an 18° latitudinal gradient in the Chilean Andes, sampling at four elevations per site. We measured vessel area, vessel density and the degree of vessel grouping. We also obtained vessel diameter distributions and estimated the xylem-specific hydraulic conductivity. Xylem traits were studied in the last five growth rings to account for within-individual variation. Key Results Xylem traits responded to changes in temperature and moisture, but also to their combination. Reductions in vessel diameter and increases in vessel density suggested increased safety levels with lower temperatures at higher elevation. Vessel grouping also increased under cold and dry conditions, but changes in vessel diameter distributions across the elevational gradient were site-specific. Interestingly, the estimated xylem-specific hydraulic conductivity remained constant across elevation and latitude, and an overwhelming proportion of the variance of xylem traits was due to within-individual responses to year-to-year climatic fluctuations, rather than to site conditions. Conclusions Despite conspicuous adjustments, xylem traits were coordinated to maintain a constant hydraulic function under a wide range of conditions. This, combined with the within-individual capacity for responding to year-to-year climatic variations, may have the potential to increase forest resilience against future environmental changes.
Wood microdensitometry provides an integrated measurement of inter and intra-annual changes in wood anatomy and lignification. Although it can be acquired through a wide array of techniques, X-ray-based techniques are still the standard. Conversion of a grayscale X-ray image to density and annual ring boundaries delimitation is performed through image analysis software. Proprietary software has dominated these applications, albeit Free Open Source Software (FOSS) has been developed recently. We present ρ-MtreeRing, a user-friendly FOSS that streamlines the entire microdensitometry analysis process through a graphical user interface based on Shiny R Software without any programming knowledge. We compared the results of this program with the most widely used commercial software (WinDendro), showing the validity of the results. ρ-MtreeRing can be personalized and developed by the microdensitometry research community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.