Protein phosphatase 2A (PP2A) is a human tumor suppressor that inhibits cellular transformation by regulating the activity of several signaling proteins critical for malignant cell behavior. PP2A has been described as a potential therapeutic target in chronic myeloid leukemia, Philadelphia chromosome-positive acute lymphoblastic leukemia and B-cell chronic lymphocytic leukemia. Here, we show that PP2A inactivation is a recurrent event in acute myeloid leukemia (AML), and that restoration of PP2A phosphatase activity by treatment with forskolin in AML cells blocks proliferation, induces caspase-dependent apoptosis and affects AKT and ERK1/2 activity. Moreover, treatment with forskolin had an additive effect with Idarubicin and Ara-c, drugs used in standard induction therapy in AML patients. Analysis at protein level of the PP2A activation status in a series of patients with AML at diagnosis showed PP2A hyperphosphorylation in 78% of cases (29/37). In addition, we found that either deregulated expression of the endogenous PP2A inhibitors SET or CIP2A, overexpression of SETBP1, or downregulation of some PP2A subunits, might be contributing to PP2A inhibition in AML. In conclusion, our results show that PP2A inhibition is a common event in AML cells and that PP2A activators, such as forskolin or FTY720, could represent potential novel therapeutic targets in AML.
Allergoids conjugated to nonoxidized mannan represent suitable vaccines for AIT. Our findings might also be of the utmost relevance to development of therapeutic interventions in other immune tolerance-related diseases.
The online version of this article has a Supplementary Appendix.
BackgroundProtein phosphatase 2A is a novel potential therapeutic target in several types of chronic and acute leukemia, and its inhibition is a common event in acute myeloid leukemia. Upregulation of SET is essential to inhibit protein phosphatase 2A in chronic myeloid leukemia, but its importance in acute myeloid leukemia has not yet been explored.
Design and MethodsWe quantified SET expression by real time reverse transcriptase polymerase chain reaction in 214 acute myeloid leukemia patients at diagnosis. Western blot was performed in acute myeloid leukemia cell lines and in 16 patients' samples. We studied the effect of SET using cell viability assays. Bioinformatics analysis of the SET promoter, chromatin immunoprecipitation, and luciferase assays were performed to evaluate the transcriptional regulation of SET.
ResultsSET overexpression was found in 60/214 patients, for a prevalence of 28%. Patients with SET overexpression had worse overall survival (P<0.01) and event-free survival (P<0.01). Deregulation of SET was confirmed by western blot in both cell lines and patients' samples. Functional analysis showed that SET promotes proliferation, and restores cell viability after protein phosphatase 2A overexpression. We identified EVI1 overexpression as a mechanism involved in SET deregulation in acute myeloid leukemia cells.
ConclusionsThese findings suggest that SET overexpression is a key mechanism in the inhibition of PP2A in acute myeloid leukemia, and that EVI1 overexpression contributes to the deregulation of SET. Furthermore, SET over-expression is associated with a poor outcome in acute myeloid leukemia, and it can be used to identify a subgroup of patients who could benefit from future treatments based on PP2A activators.
Recurrent respiratory tract infections (RRTIs) are the first leading cause of community‐ and nosocomial‐acquired infections. Antibiotics remain the mainstay of treatment, enhancing the potential to develop antibiotic resistances. Therefore, the development of new alternative approaches to prevent and treat RRTIs is highly demanded. Daily sublingual administration of the whole heat‐inactivated polybacterial preparation (PBP) MV130 significantly reduced the rate of respiratory infections in RRTIs patients, however, the immunological mechanisms of action remain unknown. Herein, we study the capacity of MV130 to immunomodulate the function of human dendritic cells (DCs) as a potential mechanism that contribute to the clinical benefits. We demonstrate that DCs from RRTIs patients and healthy controls display similar ex vivo immunological responses to MV130. By combining systems biology and functional immunological approaches we show that MV130 promotes the generation of Th1/Th17 responses via receptor‐interacting serine/threonine‐protein kinase‐2 (RIPK2)‐ and myeloid‐differentiation primary‐response gene‐88 (MyD88)‐mediated signalling pathways under the control of IL‐10. In vivo BALB/c mice sublingually immunized with MV130 display potent systemic Th1/Th17 and IL‐10 responses against related and unrelated antigens. We elucidate immunological mechanisms underlying the potential way of action of MV130, which might help to design alternative treatments in other clinical conditions with high risk of recurrent infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.