Chemical composition of the leaves' aqueous extracts from plants belonging to the Cistus genus is strongly related to their subgenus, in agreement to previous taxonomical and phylogenetic divisions. In contrast, soil and climate are less influencing factors. Leucocistus and Halimioides subgenus showed a higher content in ellagitannins. However, Cistus subgenus had higher flavonoid content.
Turbulence has been shown to alter different aspects of the physiology of some dinoflagellates. The response appears to be species-specific and dependent on the experimental design and setup used to generate small-scale turbulence. We examined the variability of the response of three dinoflagellate species to the turbulence, following the same experimental design used by Berdalet (1992) on Akashiwo sanguinea (Hirasaka) Ge. Hansen et Moestrup (=Gymnodinium nelsonii G. W. Martin). In all experiments, turbulence was generated by an orbital shaker at 100 rpm, which corresponded on bulk average, to dissipation rates (e, quantified using an acoustic Doppler velocimeter) of %2 cm 2 AE s )3 . Turbulence did not appreciably affect Gymnodinium sp., a small dinoflagellate. However, Alexandrium minutum Halim and Prorocentrum triestinum J. Schiller exhibited a reduced net growth rate (33% and 28%, respectively) when shaken during the exponential growth phase. Compared to the still cultures, the shaken treatments of A. minutum and P. triestinum increased the mean cell volume (up to 1.4-and 2.5-fold, respectively) and the mean DNA content (up to 1.8-and 5.3-fold, respectively). Cultures affected by turbulence recovered their normal cell properties when returned to still conditions. The swimming speed of the cells exposed to agitation was half that of the unshaken ones. Overall, the response of A. minutum and P. triestinum was similar, but with lower intensity, to that observed previously on A. sanguinea. We found no clear trends related to taxonomy or morphology.
Leaves from six important olive cultivars grown under the same agronomic conditions were collected at four different times from June to December and analyzed by high performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry (HPLC-DAD-TOF-MS). Twenty-eight phenolic compounds were identified and quantified. No qualitative differences were detected among leaves. However, for all cultivars, total concentrations of phenolic compounds decreased from June to August, then increased from October on, and reached higher levels again in December. Principal component analysis provided a clear separation of the phenolic content in leaves for different sampling times and cultivars. Hence, the availability of phenolic compounds depends on both the season and the cultivar. June and December seem to be good times to collect leaves as a source of phenolic compounds. December coincides with the harvest period of olives in the Andalusian region. Thus, in December olive leaves could be valorized efficiently as olive byproducts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.