Effective and sustained inhibition of non-enzymatic oncogenic driver proteins represents a major pharmacologic challenge. The clinical success of thalidomide analogs demonstrates the therapeutic efficacy of drug-induced degradation of transcription factors and other cancer targets 1 – 3 , but a significant subset of proteins are recalcitrant to targeted protein degradation using current approaches 4 , 5 . Here we report an alternative mechanism, whereby a small molecule induces highly specific, reversible polymerization, sequestration into cellular foci, and subsequent degradation of a target protein. BI-3802 is a small molecule that binds the BTB domain of the oncogenic transcription factor BCL6 and results in proteasomal degradation 6 . We used cryo-EM to reveal how the solvent-exposed moiety of a BCL6 inhibitor contributes to a composite ligand/protein surface that engages BCL6 homodimers to form a supramolecular structure. Drug-induced formation of BCL6 filaments facilitates ubiquitination by the SIAH1 E3 ubiquitin ligase. Our findings demonstrate that a small molecule can induce polymerization coupled to highly specific protein degradation, which in the case of BCL6 leads to superior pharmacological activity. These findings create new avenues for the development of therapeutics and synthetic biology.
Background Wolbachia inherited intracellular bacteria can manipulate the reproduction of their insect hosts through cytoplasmic incompatibility (CI), and certain strains have also been shown to inhibit the replication or dissemination of viruses. Wolbachia strains also vary in their relative fitness effects on their hosts and this is a particularly important consideration with respect to the potential of newly created transinfections for use in disease control.Methodology/Principal FindingsIn Aedes albopictus mosquitoes transinfected with the wMel strain from Drosophila melanogaster, which we previously reported to be unable to transmit dengue in lab challenges, no significant detrimental effects were observed on egg hatch rate, fecundity, adult longevity or male mating competitiveness. All these parameters influence the population dynamics of Wolbachia, and the data presented are favourable with respect to the aim of taking wMel to high population frequency. Challenge with the chikungunya (CHIKV) virus, for which Ae. albopictus is an important vector, was conducted and the presence of wMel abolished CHIKV dissemination to the saliva.Conclusions/significanceTaken together, these data suggest that introducing wMel into natural Ae. albopictus populations using bidirectional CI could be an efficient strategy for preventing or reducing the transmission of arboviruses by this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.