Porous alkali activated materials (AAM), can be obtained from waste glass powder and slag mixtures by alkali activation with NaOH solution. To obtain an adequate porous microstructure, the hardened AAM pastes were thermally treated at temperatures ranging between 900°C and 1000°C, for 60 or 30 minutes. Due to the intumescent behaviour specific for this type of materials, an important increase of the volume and porosity occurs during the thermal treatment. The partial substitution of waste glass powder with slag, determines the increase of compressive strength assessed before (up to 37 MPa) and after (around 10 MPa) thermal treatment; the increase of slag dosage also determines the increase of the activation temperature of the intumescent process (above 950°C). The high porosity and the specific microstructure (closed pores with various shapes and sizes) of these materials recommend them to be utilised as thermal and acoustical insulation materials.
In the last decade numerous research studies were performed in the attempt to recycle several types of industrial waste. This study has as main objective the obtaining and characterization of gypsum based composite materials with various amounts of industrial wastes (flue gas desulfurization gypsum and recycled rubber). The main properties assessed for these materials were setting time, compressive strength, apparent density and thermal conductivity. The gypsum binder was partially replaced with thermally treated flue gas desulfurization gypsum (FGDgp_t) without an important negative impact on the compressive strength; if the replacement amount is up to 40 wt.% the resulted binder still meets the requirements imposed for this property by specific norm for gypsum plaster - EN 13279-1. The substitution of gypsum plaster with FGDgp_t shortens the setting time, therefore it was compulsory to use also sodium citrate as retarder addition. The addition of 5 wt.% rubber waste has a positive effect on the thermal conductivity of composite materials based on gypsum binder with/without FGDgp_t. Consequently, these materials could be used for the manufacture of low cost, eco-friendly thermal insulation materials.
This article presents the influence of three additions i.e., hydroxyethyl methyl cellulose (HEMC), sodium bicarbonate and flue gas desulfurization (FGD) gypsum on the porosity of gypsum-based materials. The specific microstructure for a material with good thermal insulation properties i.e., numerous closed pores distributed in the binding matrix, was achieved using HEMC (0.3 wt.%) and sodium bicarbonate (0.5–2 wt.%). The addition of HEMC to the gypsum binder determines, as expected, an increase of the porosity due to its ability to stabilize entrained air. In the case of a sodium bicarbonate addition, the pores are formed in the binding matrix due to the entrapment of the gas (CO2) generated by its reaction. Sodium bicarbonate addition delays the setting of gypsum binder therefore in this study FGD gypsum (waste produced in the desulfurization process of combustion gases generated in power plants) was also added to the mixture to mitigate this negative effect. The decrease of geometrical density (up to 13%, in correlation with the additive nature and dosage) correlated with the increase of the porosity, determines, as expected, the decrease of flexural and compressive strengths (33–75%), but improves the thermal properties i.e., decreases the thermal conductivity (9–18%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.