More than 100 years ago, Alois Alzheimer first described the clinical and pathological features of an unusual brain disease during the meeting of the Society of Southwest German Psychiatrists in Tübingen: the patient, Auguste Deter, suffered memory loss, disorientation, hallucinations and delusions and died at the age of 55. In 1910, Emil Kraepelin named the condition with the eponym of "Alzheimer's disease" (AD) that is, now, the most common neurodegenerative disease with more than 25 million cases worldwide and a major medical problem nearing catastrophic levels. The present article discusses Alzheimer's work in the context of his life and time.
BackgroundThe main objective of this paper is to develop and test the ability of the Leap Motion controller (LMC) to assess the motor dysfunction in patients with Parkinson disease (PwPD) based on the MDS-UPDRSIII exercises. Four exercises (thumb forefinger tapping, hand opening/closing, pronation/supination, postural tremor) were used to evaluate the characteristics described in MDS-UPDRSIII. Clinical ratings according to the MDS/UPDRS-section III items were used as target. For that purpose, 16 participants with PD and 12 healthy people were recruited in Ospedale Cisanello, Pisa, Italy. The participants performed standardized hand movements with camera-based marker. Time and frequency domain features related to velocity, angle, amplitude, and frequency were derived from the LMC data.ResultsDifferent machine learning techniques were used to classify the PD and healthy subjects by comparing the subjective scale given by neurologists against the predicted diagnosis from the machine learning classifiers. Feature selection methods were used to choose the most significant features. Logistic regression (LR), naive Bayes (NB), and support vector machine (SVM) were trained with tenfold cross validation with selected features. The maximum obtained classification accuracy with LR was 70.37%; the average area under the ROC curve (AUC) was 0.831. The obtained classification accuracy with NB was 81.4%, with AUC of 0.811. The obtained classification accuracy with SVM was 74.07%, with AUC of 0.675.ConclusionsResults revealed that the system did not return clinically meaningful data for measuring postural tremor in PwPD. In addition, it showed limited potential to measure the forearm pronation/supination. In contrast, for finger tapping and hand opening/closing, the derived parameters showed statistical and clinical significance. Future studies should continue to validate the LMC as updated versions of the software are developed. The obtained results support the fact that most of the set of selected features contributed significantly to classify the PwPD and healthy subjects.
The main goal of this study is to investigate the potential of the Leap Motion Controller (LMC) for the objective assessment of motor dysfunctioning in patients with Parkinson's disease (PwPD). The most relevant clinical signs in Parkinson's Disease (PD), such as slowness of movements, frequency variation, amplitude variation, and speed, were extracted from the recorded LMC data. Data were clinically quantified using the LMC software development kit (SDK). In this study, 16 PwPD subjects and 12 control healthy subjects were involved. A neurologist assessed the subjects during the task execution, assigning them a score according to the MDS/UPDRS-Section III items. Features of motor performance from both subject groups (patients and healthy controls) were extracted with dedicated algorithms. Furthermore, to find out the significance of such features from the clinical point of view, machine learning based methods were used. Overall, our findings showed the moderate potential of LMC to extract the motor performance of PwPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.