As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapsein a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.
f ; Medicines for Malaria Venture, Geneva, Switzerland g ELQ-300 is a preclinical candidate that targets the liver and blood stages of Plasmodium falciparum, as well as the forms that are crucial to transmission of disease: gametocytes, zygotes, and ookinetes. A significant obstacle to the clinical development of ELQ-300 is related to its physicochemical properties. Its relatively poor aqueous solubility and high crystallinity limit absorption to the degree that only low blood concentrations can be achieved following oral dosing. While these low blood concentrations are sufficient for therapy, the levels are too low to establish an acceptable safety margin required by regulatory agencies for clinical development. One way to address the challenging physicochemical properties of ELQ-300 is through the development of prodrugs. Here, we profile ELQ-337, a bioreversible O-linked carbonate ester prodrug of the parent molecule. At the molar equivalent dose of 3 mg/kg of body weight, the delivery of ELQ-300 from ELQ-337 is enhanced by 3-to 4-fold, reaching a maximum concentration of drug in serum (C max ) of 5.9 M by 6 h after oral administration, and unlike ELQ-300 at any dose, ELQ-337 provides single-dose cures of patent malaria infections in mice at low-single-digit milligram per kilogram doses. Our findings show that the prodrug strategy represents a viable approach to overcome the physicochemical limitations of ELQ-300 to deliver the active drug to the bloodstream at concentrations sufficient for safety and toxicology studies, as well as achieving single-dose cures.
Aims: This first-in-human clinical trial of P218, a novel dihydrofolate reductase inhibitor antimalarial candidate, assessed safety, tolerability, pharmacokinetics and food effects in healthy subjects.
Methods:The study consisted of two parts. Part A was a double-blind, randomized, placebo-controlled, parallel group, ascending dose study comprising seven fasted cohorts. Eight subjects/cohort were randomized (3:1) to receive either a single oral dose of P218 (10, 30, 100, 250, 500, 750 and 1000 mg) or placebo. Part B was an open-label, cross-over, fed/fasted cohort (eight subjects) that received a 250 mg single dose of P218 in two treatment periods.Results: P218 was generally well tolerated across all doses; 21 treatment-emergent adverse events occurred in 15/64 subjects. Nine adverse events in five subjects, all of mild intensity, were judged drug related. No clinically relevant abnormalities in ECG, vital signs or laboratory tests changes were observed. P218 was rapidly absorbed, with C max achieved between 0.5 and 2 hours post dose. Plasma concentrations declined bi-exponentially with half-life values ranging from 3.1 to 6.7 hours (10 and 30 mg), increasing up to 8.9 to 19.6 hours (doses up to 1000 mg). Exposure values increased dose-proportionally between 100 and 1000 mg for P218 (parent) and three primary metabolites (P218 β-acyl glucuronide, P218-OH and P218-OH β-acyl glucuronide). Co-administration of P218 with food reduced C max by 35% and delayed absorption by 1 hour, with no significant impact on AUC.Conclusion: P218 displayed favourable safety, tolerability and pharmacokinetics. In view of its short half-life, a long-acting formulation will be needed for malaria chemoprotection.The authors confirm that the PI for this paper is Ulrike Lorch and that she had direct clinical responsibility for patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.