The present work is aimed at the understanding of the condensation by-products role in wet peroxide oxidation processes. This study has been carried out in absence of catalyst to isolate the (positive or negative) effect of the condensation by-products on the kinetics of the process, and in presence of oxygen, to enhance the oxidation performance. This process was denoted as oxygen-assisted wet peroxide oxidation (WPO-O2) and was applied to the treatment of phenol. First, the influence of the reaction operating conditions (i.e., temperature, pH0, initial phenol concentration, H2O2 dose and O2 pressure) was evaluated. The initial phenol concentration and, overall, the H2O2 dose, were identified as the most critical variables for the formation of condensation by-products and thus, for the oxidation performance. Afterwards, a flow reactor packed with inert quartz beads was used to facilitate the deposition of such species and thus, to evaluate their impact on the kinetics of the process. It was found that as the quartz beads were covered by condensation by-products along reaction, the disappearance rates of phenol, total organic carbon (TOC) and H2O2 were increased. Consequently, an autocatalytic kinetic model, accounting for the catalytic role of the condensation by products, provides a well description of wet peroxide oxidation performance.
The deposition of condensation by-products onto the catalyst surface upon wet peroxide and wet air oxidation processes has usually been associated with catalyst deactivation. However, in Part I of this paper, it was demonstrated that these carbonaceous deposits actually act as catalytic promoters in the oxygen-assisted wet peroxide oxidation (WPO-O2) of phenol. Herein, the intrinsic activity, nature and stability of these species have been investigated. To achieve this goal, an up-flow fixed bed reactor packed with porous Al2O3 spheres was used to facilitate the deposition of the condensation by-products formed in the liquid phase. It was demonstrated that the condensation by-products catalyzed the decomposition of H2O2 and a higher amount of these species leads to a higher degree of oxidation degree The reaction rates, conversion values and intermediates’ distribution were analyzed. The characterization of the carbonaceous deposits on the Al2O3 spheres showed a significant amount of condensation by-products (~6 wt.%) after 650 h of time on stream. They are of aromatic nature and present oxygen functional groups consisting of quinones, phenols, aldehydes, carboxylics and ketones. The initial phenol concentration and H2O2 dose were found to be crucial variables for the generation and consumption of such species, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.