It has been reported that perinatal exposure to opiates affects mRNA synthesis, body growth and brain development in mammals, including humans. We have observed that morphine administration in drinking water during the perinatal period alters peptide development in the striatum of the rat. There is a marked increase in substance P and met-enkephalin content, the latter is maintained even at 30 days postnatally. The transient increase or earlier maturation of substance P content is correlated by a more precocious axon terminal organization as revealed by immunocytochemical staining. The increased metenkephalin content is correlated by a higher abundance of preproenkephalin A mRNA and this correlation is particularly evident at 15 days postnatally. At earlier times both northern blotting and in situ hybridization techniques fail to show any significant difference between control and morphine exposed rats, likely because the peptide content is not very different in the two groups or at least the gap is not as wide as at later times.
The early alterations of G-protein-dependent transductional mechanisms have been characterized in the retina of alloxan-treated diabetic rats. Five weeks after alloxan injection, pertussis toxin radiolabeling of Gi/Go proteins was markedly reduced in the retina of diabetic animals, suggesting either a reduced expression and/or the presence of some structural modification of these G-protein subtypes. The functional activity of Gs proteins, measured as stimulation of membrane adenylate cyclase by dopamine, did not seem to be impaired at this stage of the pathology; basal adenylate cyclase activity was indeed increased in diabetic rats, consistent with the observed reduction of Gi/Go inhibitory proteins. Such functional alterations of the cAMP producing system were causally related to diabetes induction, since they were reversed by treatment of diabetic animals with insulin. These results suggest that G-protein dependent transduction mechanisms are altered in the retina of diabetic animals, and that a defect of Gi/Go proteins could represent an early transductional damage in the development of diabetic retinopathy.
Previous studies from our laboratory have suggested that diabetes-associated central nervous system abnormalities are characterized by progressive alterations of neurotransmitters and of transductional Gi/Go proteins. In this study, we have further characterized these abnormalities in the striatum of alloxan-diabetic rats by means of adenosine 5'-diphosphate (ADP)-ribosylation, and Western and Northern blotting techniques. Fourteen weeks after diabetes induction, pertussis-toxin (PTX) catalyzed ADP-ribosylation of Gi/Go proteins was markedly reduced in diabetic animals, as shown by a clear decrease of 32P-ADPribose incorporation into G protein alpha subunits. In agreement with our previous pharmacological studies that showed a reduction of Gi-mediated modulation of adenylate cyclase activity only at this stage of diabetes, no changes in PTX-mediated ADP-ribosylation were observed earlier (5-wk diabetes). Immunoblotting studies performed by using antibodies selectively raised against Gi-2, Go, and Gs proteins did not reveal any differences between control and diabetic animals at any stage of diabetes. Similarly, the mRNAs corresponding to the alpha subunits of Gi-2, Go, and Gs proteins did not show any marked changes in chronic diabetic rats with respect to control animals. It is therefore concluded that diabetes is associated with development of a time-related alteration of cerebral Gi/Go proteins and that this defect is not owing to gross changes in either content of G proteins or mRNA level, but probably reflects modifications of G protein's structure or physiological status affecting the coupling with membrane effector systems and the sensitivity to PTX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.