Our results suggest that a biodiversity loss in deep-sea ecosystems might be associated with exponential reductions of their functions. Because the deep sea plays a key role in ecological and biogeochemical processes at a global scale, this study provides scientific evidence that the conservation of deep-sea biodiversity is a priority for a sustainable functioning of the worlds' oceans.
Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.
BackgroundSeveral unicellular organisms (prokaryotes and protozoa) can live under permanently anoxic conditions. Although a few metazoans can survive temporarily in the absence of oxygen, it is believed that multi-cellular organisms cannot spend their entire life cycle without free oxygen. Deep seas include some of the most extreme ecosystems on Earth, such as the deep hypersaline anoxic basins of the Mediterranean Sea. These are permanently anoxic systems inhabited by a huge and partly unexplored microbial biodiversity.ResultsDuring the last ten years three oceanographic expeditions were conducted to search for the presence of living fauna in the sediments of the deep anoxic hypersaline L'Atalante basin (Mediterranean Sea). We report here that the sediments of the L'Atalante basin are inhabited by three species of the animal phylum Loricifera (Spinoloricus nov. sp., Rugiloricus nov. sp. and Pliciloricus nov. sp.) new to science. Using radioactive tracers, biochemical analyses, quantitative X-ray microanalysis and infrared spectroscopy, scanning and transmission electron microscopy observations on ultra-sections, we provide evidence that these organisms are metabolically active and show specific adaptations to the extreme conditions of the deep basin, such as the lack of mitochondria, and a large number of hydrogenosome-like organelles, associated with endosymbiotic prokaryotes.ConclusionsThis is the first evidence of a metazoan life cycle that is spent entirely in permanently anoxic sediments. Our findings allow us also to conclude that these metazoans live under anoxic conditions through an obligate anaerobic metabolism that is similar to that demonstrated so far only for unicellular eukaryotes. The discovery of these life forms opens new perspectives for the study of metazoan life in habitats lacking molecular oxygen.
The great variety of geological and hydrological conditions in the deep sea generates many different habitats. Some are only recently explored, although their true extent and geographical coverage are still not fully established. Both continental margins and mid-oceanic seafloors are much more complex ecologically, geologically, chemically and hydrodynamically than originally thought. As a result, fundamental patterns of species distribution first observed and explained in the context of relatively monotonous slopes and abyssal plains must now be re-evaluated in the light of this newly recognized habitat heterogeneity. Based on a global database of nematode genus composition, collected as part of the Census of Marine Life, we show that macrohabitat heterogeneity contributes significantly to total deep-sea nematode diversity on a global scale. Different deep-sea settings harbour specific nematode assemblages. Some of them, like coral rubble zones or nodule areas, are very diverse habitats. Factors such as increased substrate complexity in the case of nodules and corals seem to facilitate the co-existence of a large number of genera with different modes of life, ranging from sediment dwelling to epifaunal. Furthermore, strong biochemical gradients in the case of vents or seeps are responsible for the success of particular genera, which are not prominent in more typical soft sediments. Many
The twilight or mesophotic zone is amongst the less explored marine regions. In coastal areas, investigations and manipulative experiments on benthic biodiversity and ecosystem functioning at depths up to [50 m have been recently made possible by the progress of SCUBA techniques. In this study, we tested the effects of the presence of a gorgonian forest characterised by a large and dense population of the gold coral Savalia savaglia (Bertoloni 1819) on the benthic biodiversity (nematode species richness, and meiofauna community structure and richness of taxa), trophic guilds state (molluscs) and ecosystem functioning in the surrounding sediments. The S. savaglia colonies create elevated and complex tertiary structures. Our results indicate that the presence of these colonies was associated with a significantly increased deposition of bioavailable substrates and enhanced biodiversity, when compared with soft bottoms at the same depth but without gold corals. The higher biodiversity and altered trophic conditions resulted in higher rates of ecosystem functioning (e.g., higher benthic biomasses). These results suggest that S. savaglia should be particularly protected not only for its specific rarity, endemism and vulnerability but also because it has a prominent role in sustaining high levels of biodiversity and ecosystem functioning in the surrounding benthos of the twilight zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.